Loading…
Measuring the electron temperature and identifying plasma detachment using machine learning and spectroscopy
A machine learning approach has been implemented to measure the electron temperature directly from the emission spectra of a tokamak plasma. This approach utilized a neural network (NN) trained on a dataset of 1865 time slices from operation of the DIII-D tokamak using extreme ultraviolet/vacuum ult...
Saved in:
Published in: | Review of scientific instruments 2021-04, Vol.92 (4), p.043520-043520 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A machine learning approach has been implemented to measure the electron temperature directly from the emission spectra of a tokamak plasma. This approach utilized a neural network (NN) trained on a dataset of 1865 time slices from operation of the DIII-D tokamak using extreme ultraviolet/vacuum ultraviolet emission spectroscopy matched with high-accuracy divertor Thomson scattering measurements of the electron temperature, Te. This NN is shown to be particularly good at predicting Te at low temperatures (Te < 10 eV) where the NN demonstrated a mean average error of less than 1 eV. Trained to detect plasma detachment in the tokamak divertor, a NN classifier was able to correctly identify detached states (Te < 5 eV) with a 99% accuracy (an F1 score of 0.96) at an acquisition rate 10× faster than the Thomson scattering measurement. The performance of the model is understood by examining a set of 4800 theoretical spectra generated using collisional radiative modeling that was also used to predict the performance of a low-cost spectrometer viewing nitrogen emission in the visible wavelengths. These results provide a proof-of-principle that low-cost spectrometers leveraged with machine learning can be used to boost the performance of more expensive diagnostics on fusion devices and be used independently as a fast and accurate Te measurement and detachment classifier. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0034552 |