Loading…
Neurons learn slower than they think
Recent studies revealed complex convergence dynamics in gradient-based methods, which has been little understood so far. Changing the step size to balance between high convergence rate and small generalization error may not be sufficient: maximizing the test accuracy usually requires a larger learni...
Saved in:
Published in: | arXiv.org 2021-04 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent studies revealed complex convergence dynamics in gradient-based methods, which has been little understood so far. Changing the step size to balance between high convergence rate and small generalization error may not be sufficient: maximizing the test accuracy usually requires a larger learning rate than minimizing the training loss. To explore the dynamic bounds of convergence rate, this study introduces \textit{differential capability} into an optimization process, which measures whether the test accuracy increases as fast as a model approaches the decision boundary in a classification problem. The convergence analysis showed that: 1) a higher convergence rate leads to slower capability growth; 2) a lower convergence rate results in faster capability growth and decay; 3) regulating a convergence rate in either direction reduces differential capability. |
---|---|
ISSN: | 2331-8422 |