Loading…
Non-Polynomial Interpolation of Functions with Large Gradients and Its Application
Interpolation of a function of one variable with large gradients in the boundary layer region is studied. The problem is that the use of classical polynomial interpolation formulas on a uniform mesh to functions with large gradients can lead to errors of the order of , despite a small mesh size. An...
Saved in:
Published in: | Computational mathematics and mathematical physics 2021-02, Vol.61 (2), p.167-176 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Interpolation of a function of one variable with large gradients in the boundary layer region is studied. The problem is that the use of classical polynomial interpolation formulas on a uniform mesh to functions with large gradients can lead to errors of the order of
, despite a small mesh size. An interpolation formula based on fitting to the component that defines the boundary-layer growth of the function is investigated. An error estimate, which depends on the number of interpolation nodes and is uniform over the boundary layer component and its derivatives, is obtained. It is shown how the interpolation formula derived can be used to construct formulas for numerical differentiation and integration and in the two-dimensional case. The corresponding error estimates are obtained. |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S0965542521020147 |