Loading…
γ-Valerolactone-introduced controlled-isomerization of glucose for lactic acid production over an Sn-Beta catalyst
Combined experiments and density functional theory (DFT) calculations provided insights into the role of environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid (LA) over the post-synthesized Sn-Beta catalyst. By introducing 2.0 wt% GVL, a m...
Saved in:
Published in: | Green chemistry : an international journal and green chemistry resource : GC 2021-04, Vol.23 (7), p.2634-2639 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Combined experiments and density functional theory (DFT) calculations provided insights into the role of environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid (LA) over the post-synthesized Sn-Beta catalyst. By introducing 2.0 wt% GVL, a much higher yield of LA (72.0 wt%) was obtained than that in pure water (60.1 wt%) at 200 °C, 4 MPa N
2
, and 30 min in a batch reactor. The GVL effectively suppressed the isomerization of glucose into fructose in a controlled-transfer mode, resulting in a lower fructose concentration. Thermogravimetry-differential analysis and DFT calculations demonstrated that the competitive adsorption between GVL and glucose happened at the open Sn sites over the Sn-Beta catalyst, which led to a controlled isomerization rate in water. Further increasing the content of GVL to 20.0 wt%, the higher yield of LA (74.0 wt%) was attributed to the more efficient competitive adsorption while also inhibiting carbon deposition.
GVL ( |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/d1gc00378j |