Loading…

Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules

Non-equilibrium conditions must have been crucial for the assembly of the first informational polymers of early life, but supporting their formation and continuous enrichment in a long-lasting environment. Here, we explore how gas bubbles in water subjected to a thermal gradient, a likely scenario w...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-04
Main Authors: Morasch, Matthias, Liu, Jonathan, Dirscherl, Christina F, Ianeselli, Alan, Kühnlein, Alexandra, Kristian Le Vay, Schwintek, Philipp, Islam, Saidul, Corpinot, Mérina K, Scheu, Bettina, Dingwell, Donald B, Schwille, Petra, Mutschler, Hannes, Powner, Matthew W, Mast, Christof B, Braun, Dieter
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-equilibrium conditions must have been crucial for the assembly of the first informational polymers of early life, but supporting their formation and continuous enrichment in a long-lasting environment. Here, we explore how gas bubbles in water subjected to a thermal gradient, a likely scenario within crustal mafic rocks on the early Earth, drive a complex, continuous enrichment of prebiotic molecules. NRA precursors, monomers, active ribozymes, oligonucleotides and lipids are shown to (1) cycle between dry and wet states, enabling the central step of RNA phosphorylation, (2) accumulate at the gas-water interface to drastically increase ribozymatic activity, (3) condense into hydrogels, (4) form pure crystals and (5) encapsulate into protecting vesicle aggregates that subsequently undergo fission. These effects occur within less than 30 min. The findings unite, in one location, the physical conditions that were crucial for the chemical emergence of biopolymers. They suggest that heated microbubbles could have hosted the first cycles of molecular evolution.
ISSN:2331-8422
DOI:10.48550/arxiv.2104.05537