Loading…
Magnetohydrodynamics fluid flow passing through a sliced magnetic sphere influenced by mixed convection
We consider mathematical modelling of magnetohydrodynamics viscous fluid flow when passing a magnetic sliced sphere in which the effect of mixed convection included. We therefore develop dimensional governing equations from the law of the mass conservation, momentum conservation, and energy equation...
Saved in:
Published in: | Journal of physics. Conference series 2021-03, Vol.1836 (1), p.12042 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1952-e8c086eed96ea0929c121105ae4169f11947c05625db2936c26833b1942455bc3 |
container_end_page | |
container_issue | 1 |
container_start_page | 12042 |
container_title | Journal of physics. Conference series |
container_volume | 1836 |
creator | Widodo, B |
description | We consider mathematical modelling of magnetohydrodynamics viscous fluid flow when passing a magnetic sliced sphere in which the effect of mixed convection included. We therefore develop dimensional governing equations from the law of the mass conservation, momentum conservation, and energy equation. The governing equations further are converted into non-dimensional equations by using non-dimensional variables. Further, by using similarity equations in which stream function is included, we obtain non-linear system equation. This non-linear equation is solved numerically by using Keller-Box scheme. We further take numerical computation to analyze velocity and temperature on front of the lower stagnation of the magnetic sliced sphere when various parameters are included, such as Prandtl number, sliced angle, magnetic parameter and mixed convection parameter. We obtain numerical solution that when magnetic parameter increases then profile of fluid velocity decreases but the profile of fluid temperature increases. The mixed convection parameter increases then the velocity profile of the fluid increases but the temperature profile of the fluid decreases. The Prandtl number parameter increases then both of the velocity and temperature profiles of the fluid decreases, respectively. The sliced angle parameter increases then the fluid velocity profile increases but the fluid temperature profile decreases. |
doi_str_mv | 10.1088/1742-6596/1836/1/012042 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2512915411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512915411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1952-e8c086eed96ea0929c121105ae4169f11947c05625db2936c26833b1942455bc3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwG4jEuSxOm7Y5ookvCcQFzlGapm2mNSlJC_TfkzI0H2zLr19behC6BnILpCw3UGQ0yRnPN1CmMW0IUJLRE7Q6KqfHvizP0UUIO0LSGMUKta-ytXp03Vx7V89W9kYF3OwnU8fsvvEgQzC2xWPn3dR2WOKwN0rXuP8zGoXD0GmvsbHRpe0iVTPuzU9slLNfWo3G2Ut01sh90Ff_dY0-Hu7ft0_Jy9vj8_buJVHAGU10qUiZa13zXEvCKVdAAQiTOoOcNwA8KxRhOWV1RXmaK5qXaVrFMc0Yq1S6RjeHu4N3n5MOo9i5ydv4UlAGlAPLAOJWcdhS3oXgdSMGb3rpZwFELFTFwkss7MRCVYA4UE1_AUU1axc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512915411</pqid></control><display><type>article</type><title>Magnetohydrodynamics fluid flow passing through a sliced magnetic sphere influenced by mixed convection</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Widodo, B</creator><creatorcontrib>Widodo, B</creatorcontrib><description>We consider mathematical modelling of magnetohydrodynamics viscous fluid flow when passing a magnetic sliced sphere in which the effect of mixed convection included. We therefore develop dimensional governing equations from the law of the mass conservation, momentum conservation, and energy equation. The governing equations further are converted into non-dimensional equations by using non-dimensional variables. Further, by using similarity equations in which stream function is included, we obtain non-linear system equation. This non-linear equation is solved numerically by using Keller-Box scheme. We further take numerical computation to analyze velocity and temperature on front of the lower stagnation of the magnetic sliced sphere when various parameters are included, such as Prandtl number, sliced angle, magnetic parameter and mixed convection parameter. We obtain numerical solution that when magnetic parameter increases then profile of fluid velocity decreases but the profile of fluid temperature increases. The mixed convection parameter increases then the velocity profile of the fluid increases but the temperature profile of the fluid decreases. The Prandtl number parameter increases then both of the velocity and temperature profiles of the fluid decreases, respectively. The sliced angle parameter increases then the fluid velocity profile increases but the fluid temperature profile decreases.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1836/1/012042</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computational fluid dynamics ; Conservation ; Convection ; Fluid flow ; Magnetic properties ; Magnetohydrodynamics ; Nonlinear equations ; Numerical analysis ; Parameters ; Physics ; Prandtl number ; Stream functions (fluids) ; Temperature profiles ; Velocity ; Velocity distribution ; Viscous fluids</subject><ispartof>Journal of physics. Conference series, 2021-03, Vol.1836 (1), p.12042</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1952-e8c086eed96ea0929c121105ae4169f11947c05625db2936c26833b1942455bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2512915411?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Widodo, B</creatorcontrib><title>Magnetohydrodynamics fluid flow passing through a sliced magnetic sphere influenced by mixed convection</title><title>Journal of physics. Conference series</title><description>We consider mathematical modelling of magnetohydrodynamics viscous fluid flow when passing a magnetic sliced sphere in which the effect of mixed convection included. We therefore develop dimensional governing equations from the law of the mass conservation, momentum conservation, and energy equation. The governing equations further are converted into non-dimensional equations by using non-dimensional variables. Further, by using similarity equations in which stream function is included, we obtain non-linear system equation. This non-linear equation is solved numerically by using Keller-Box scheme. We further take numerical computation to analyze velocity and temperature on front of the lower stagnation of the magnetic sliced sphere when various parameters are included, such as Prandtl number, sliced angle, magnetic parameter and mixed convection parameter. We obtain numerical solution that when magnetic parameter increases then profile of fluid velocity decreases but the profile of fluid temperature increases. The mixed convection parameter increases then the velocity profile of the fluid increases but the temperature profile of the fluid decreases. The Prandtl number parameter increases then both of the velocity and temperature profiles of the fluid decreases, respectively. The sliced angle parameter increases then the fluid velocity profile increases but the fluid temperature profile decreases.</description><subject>Computational fluid dynamics</subject><subject>Conservation</subject><subject>Convection</subject><subject>Fluid flow</subject><subject>Magnetic properties</subject><subject>Magnetohydrodynamics</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Physics</subject><subject>Prandtl number</subject><subject>Stream functions (fluids)</subject><subject>Temperature profiles</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscous fluids</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwG4jEuSxOm7Y5ookvCcQFzlGapm2mNSlJC_TfkzI0H2zLr19behC6BnILpCw3UGQ0yRnPN1CmMW0IUJLRE7Q6KqfHvizP0UUIO0LSGMUKta-ytXp03Vx7V89W9kYF3OwnU8fsvvEgQzC2xWPn3dR2WOKwN0rXuP8zGoXD0GmvsbHRpe0iVTPuzU9slLNfWo3G2Ut01sh90Ff_dY0-Hu7ft0_Jy9vj8_buJVHAGU10qUiZa13zXEvCKVdAAQiTOoOcNwA8KxRhOWV1RXmaK5qXaVrFMc0Yq1S6RjeHu4N3n5MOo9i5ydv4UlAGlAPLAOJWcdhS3oXgdSMGb3rpZwFELFTFwkss7MRCVYA4UE1_AUU1axc</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Widodo, B</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210301</creationdate><title>Magnetohydrodynamics fluid flow passing through a sliced magnetic sphere influenced by mixed convection</title><author>Widodo, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1952-e8c086eed96ea0929c121105ae4169f11947c05625db2936c26833b1942455bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational fluid dynamics</topic><topic>Conservation</topic><topic>Convection</topic><topic>Fluid flow</topic><topic>Magnetic properties</topic><topic>Magnetohydrodynamics</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Physics</topic><topic>Prandtl number</topic><topic>Stream functions (fluids)</topic><topic>Temperature profiles</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Widodo, B</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Widodo, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamics fluid flow passing through a sliced magnetic sphere influenced by mixed convection</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>1836</volume><issue>1</issue><spage>12042</spage><pages>12042-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>We consider mathematical modelling of magnetohydrodynamics viscous fluid flow when passing a magnetic sliced sphere in which the effect of mixed convection included. We therefore develop dimensional governing equations from the law of the mass conservation, momentum conservation, and energy equation. The governing equations further are converted into non-dimensional equations by using non-dimensional variables. Further, by using similarity equations in which stream function is included, we obtain non-linear system equation. This non-linear equation is solved numerically by using Keller-Box scheme. We further take numerical computation to analyze velocity and temperature on front of the lower stagnation of the magnetic sliced sphere when various parameters are included, such as Prandtl number, sliced angle, magnetic parameter and mixed convection parameter. We obtain numerical solution that when magnetic parameter increases then profile of fluid velocity decreases but the profile of fluid temperature increases. The mixed convection parameter increases then the velocity profile of the fluid increases but the temperature profile of the fluid decreases. The Prandtl number parameter increases then both of the velocity and temperature profiles of the fluid decreases, respectively. The sliced angle parameter increases then the fluid velocity profile increases but the fluid temperature profile decreases.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1836/1/012042</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-03, Vol.1836 (1), p.12042 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2512915411 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Computational fluid dynamics Conservation Convection Fluid flow Magnetic properties Magnetohydrodynamics Nonlinear equations Numerical analysis Parameters Physics Prandtl number Stream functions (fluids) Temperature profiles Velocity Velocity distribution Viscous fluids |
title | Magnetohydrodynamics fluid flow passing through a sliced magnetic sphere influenced by mixed convection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A17%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamics%20fluid%20flow%20passing%20through%20a%20sliced%20magnetic%20sphere%20influenced%20by%20mixed%20convection&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Widodo,%20B&rft.date=2021-03-01&rft.volume=1836&rft.issue=1&rft.spage=12042&rft.pages=12042-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1836/1/012042&rft_dat=%3Cproquest_cross%3E2512915411%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1952-e8c086eed96ea0929c121105ae4169f11947c05625db2936c26833b1942455bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2512915411&rft_id=info:pmid/&rfr_iscdi=true |