Loading…
Some Results on Quasi-Semiprime Submodules
Let R be a commutative ring with unity and let B be a submodule of a non-zero left R-module D , B is called semiprime if whenever a k y ∈ B , a ∈ R , y ∈ D , k ∈ Z + implies a y ∈ B . We say that a proper submodule B of an R-module D is a quasi-semiprime submodule if whenever a k b y ∈ B , where a ,...
Saved in:
Published in: | Journal of physics. Conference series 2021-03, Vol.1818 (1), p.12189 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let R be a commutative ring with unity and let
B
be a submodule of a non-zero left R-module
D
,
B
is called semiprime if whenever
a
k
y
∈
B
,
a
∈
R
,
y
∈
D
,
k
∈
Z
+
implies
a
y
∈
B
. We say that a proper submodule
B
of an R-module
D
is a quasi-semiprime submodule if whenever
a
k
b
y
∈
B
, where
a
,
b
∈
R
,
y
∈
D
,
k
∈
Z
+
implies that
a
b
y
∈
B
. Equivalently, a proper submodule
B
of an R-module
D
is said to be a quasi-semiprime submodule if and only if [
B
∶ (
y
)] is a semiprime ideal of R for each
y
∈
D
. We give many results of this type of submodules. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/1818/1/012189 |