Loading…
Variational Bayesian inversion for the reaction coefficient in space-time nonlocal diffusion equations
In the paper, a variational Bayesian method is used to identify the reaction coefficient for space-time nonlocal diffusion equations using nonlocal averaged flux data. To show the posterior measure to be well-defined, we rigorously prove that the forward operator is continuous with respect to the un...
Saved in:
Published in: | Advances in computational mathematics 2021-06, Vol.47 (3), Article 31 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the paper, a variational Bayesian method is used to identify the reaction coefficient for space-time nonlocal diffusion equations using nonlocal averaged flux data. To show the posterior measure to be well-defined, we rigorously prove that the forward operator is continuous with respect to the unknown reaction field. Then, gradient-based prior information is proposed to explore oscillation features in the reaction coefficient. Moreover, the Bayesian inverse problem is shown to be well-posed in Hellinger distance. To accurately characterize the posterior density using uncorrelated samples, an efficient variational Bayesian method is used to estimate the reaction coefficient in the nonlocal models. A few numerical results are presented to illustrate the efficacy of the proposed approach and confirm some theoretic discoveries. |
---|---|
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-021-09850-1 |