Loading…
Hybrid Deep Learning for Dynamic Total Transfer Capability Control
This letter proposes a data-driven hybrid deep learning method for dynamic total transfer capability (TTC) control. It leverages deep learning (DL) to achieve fast prediction of TTC and reduce the problem complexity, while the deep reinforcement learning (DRL) method, e.g., proximal policy optimizat...
Saved in:
Published in: | IEEE transactions on power systems 2021-05, Vol.36 (3), p.2733-2736 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This letter proposes a data-driven hybrid deep learning method for dynamic total transfer capability (TTC) control. It leverages deep learning (DL) to achieve fast prediction of TTC and reduce the problem complexity, while the deep reinforcement learning (DRL) method, e.g., proximal policy optimization (PPO), is enhanced by competitive learning (CL) to obtain a better generalization of the DRL agents. This also allows us to deal with system stochasticity. Comparison results with other model-based alternatives on the IEEE 39-bus system highlight the advantages of the proposed method for variable unseen and insecure scenarios. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2021.3057523 |