Loading…

Hybrid Deep Learning for Dynamic Total Transfer Capability Control

This letter proposes a data-driven hybrid deep learning method for dynamic total transfer capability (TTC) control. It leverages deep learning (DL) to achieve fast prediction of TTC and reduce the problem complexity, while the deep reinforcement learning (DRL) method, e.g., proximal policy optimizat...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2021-05, Vol.36 (3), p.2733-2736
Main Authors: Gao, Qiu, Liu, Youbo, Zhao, Junbo, Liu, Junyong, Chung, Chi Yung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-167c5813bada7500362a0a1d18a98ba18b504b1d08d457c447c9923373e201843
cites cdi_FETCH-LOGICAL-c295t-167c5813bada7500362a0a1d18a98ba18b504b1d08d457c447c9923373e201843
container_end_page 2736
container_issue 3
container_start_page 2733
container_title IEEE transactions on power systems
container_volume 36
creator Gao, Qiu
Liu, Youbo
Zhao, Junbo
Liu, Junyong
Chung, Chi Yung
description This letter proposes a data-driven hybrid deep learning method for dynamic total transfer capability (TTC) control. It leverages deep learning (DL) to achieve fast prediction of TTC and reduce the problem complexity, while the deep reinforcement learning (DRL) method, e.g., proximal policy optimization (PPO), is enhanced by competitive learning (CL) to obtain a better generalization of the DRL agents. This also allows us to deal with system stochasticity. Comparison results with other model-based alternatives on the IEEE 39-bus system highlight the advantages of the proposed method for variable unseen and insecure scenarios.
doi_str_mv 10.1109/TPWRS.2021.3057523
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2515850037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9349169</ieee_id><sourcerecordid>2515850037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-167c5813bada7500362a0a1d18a98ba18b504b1d08d457c447c9923373e201843</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwA3CxxDll145j-wgpUKRKIAjiaDmJg1KlSbDTQ_6elFac9jDzZqVHyDXCAhH0Xfb29f6xYMBwwUFIwfgJmaEQKoJE6lMyA6VEpLSAc3IRwgYAkimYkYfVmPu6pEvnerp21rd1-02rztPl2NptXdCsG2xDM2_bUDlPU9vbvG7qYaRp1w6-ay7JWWWb4K6Od04-nx6zdBWtX59f0vt1VDAthggTWQiFPLellQKAJ8yCxRKV1Sq3qHIBcY4lqDIWsohjWWjNOJfcMUAV8zm5Pez2vvvZuTCYTbfz7fTSMIFC7Tfl1GKHVuG7ELyrTO_rrfWjQTB7V-bPldm7MkdXE3RzgGrn3D-geawx0fwXV7xjgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515850037</pqid></control><display><type>article</type><title>Hybrid Deep Learning for Dynamic Total Transfer Capability Control</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gao, Qiu ; Liu, Youbo ; Zhao, Junbo ; Liu, Junyong ; Chung, Chi Yung</creator><creatorcontrib>Gao, Qiu ; Liu, Youbo ; Zhao, Junbo ; Liu, Junyong ; Chung, Chi Yung</creatorcontrib><description>This letter proposes a data-driven hybrid deep learning method for dynamic total transfer capability (TTC) control. It leverages deep learning (DL) to achieve fast prediction of TTC and reduce the problem complexity, while the deep reinforcement learning (DRL) method, e.g., proximal policy optimization (PPO), is enhanced by competitive learning (CL) to obtain a better generalization of the DRL agents. This also allows us to deal with system stochasticity. Comparison results with other model-based alternatives on the IEEE 39-bus system highlight the advantages of the proposed method for variable unseen and insecure scenarios.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2021.3057523</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>artificial intelligence ; Deep learning ; deep reinforcement learning ; distributed proximal policy optimization ; Generators ; Optimization ; Power system dynamics ; Security ; Stability criteria ; Total transfer capability ; Training ; Transient analysis</subject><ispartof>IEEE transactions on power systems, 2021-05, Vol.36 (3), p.2733-2736</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-167c5813bada7500362a0a1d18a98ba18b504b1d08d457c447c9923373e201843</citedby><cites>FETCH-LOGICAL-c295t-167c5813bada7500362a0a1d18a98ba18b504b1d08d457c447c9923373e201843</cites><orcidid>0000-0001-5257-7280 ; 0000-0002-5465-5243 ; 0000-0001-6607-2240 ; 0000-0002-8498-9666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9349169$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Gao, Qiu</creatorcontrib><creatorcontrib>Liu, Youbo</creatorcontrib><creatorcontrib>Zhao, Junbo</creatorcontrib><creatorcontrib>Liu, Junyong</creatorcontrib><creatorcontrib>Chung, Chi Yung</creatorcontrib><title>Hybrid Deep Learning for Dynamic Total Transfer Capability Control</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This letter proposes a data-driven hybrid deep learning method for dynamic total transfer capability (TTC) control. It leverages deep learning (DL) to achieve fast prediction of TTC and reduce the problem complexity, while the deep reinforcement learning (DRL) method, e.g., proximal policy optimization (PPO), is enhanced by competitive learning (CL) to obtain a better generalization of the DRL agents. This also allows us to deal with system stochasticity. Comparison results with other model-based alternatives on the IEEE 39-bus system highlight the advantages of the proposed method for variable unseen and insecure scenarios.</description><subject>artificial intelligence</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>distributed proximal policy optimization</subject><subject>Generators</subject><subject>Optimization</subject><subject>Power system dynamics</subject><subject>Security</subject><subject>Stability criteria</subject><subject>Total transfer capability</subject><subject>Training</subject><subject>Transient analysis</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EEqXwA3CxxDll145j-wgpUKRKIAjiaDmJg1KlSbDTQ_6elFac9jDzZqVHyDXCAhH0Xfb29f6xYMBwwUFIwfgJmaEQKoJE6lMyA6VEpLSAc3IRwgYAkimYkYfVmPu6pEvnerp21rd1-02rztPl2NptXdCsG2xDM2_bUDlPU9vbvG7qYaRp1w6-ay7JWWWb4K6Od04-nx6zdBWtX59f0vt1VDAthggTWQiFPLellQKAJ8yCxRKV1Sq3qHIBcY4lqDIWsohjWWjNOJfcMUAV8zm5Pez2vvvZuTCYTbfz7fTSMIFC7Tfl1GKHVuG7ELyrTO_rrfWjQTB7V-bPldm7MkdXE3RzgGrn3D-geawx0fwXV7xjgg</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Gao, Qiu</creator><creator>Liu, Youbo</creator><creator>Zhao, Junbo</creator><creator>Liu, Junyong</creator><creator>Chung, Chi Yung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5257-7280</orcidid><orcidid>https://orcid.org/0000-0002-5465-5243</orcidid><orcidid>https://orcid.org/0000-0001-6607-2240</orcidid><orcidid>https://orcid.org/0000-0002-8498-9666</orcidid></search><sort><creationdate>202105</creationdate><title>Hybrid Deep Learning for Dynamic Total Transfer Capability Control</title><author>Gao, Qiu ; Liu, Youbo ; Zhao, Junbo ; Liu, Junyong ; Chung, Chi Yung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-167c5813bada7500362a0a1d18a98ba18b504b1d08d457c447c9923373e201843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial intelligence</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>distributed proximal policy optimization</topic><topic>Generators</topic><topic>Optimization</topic><topic>Power system dynamics</topic><topic>Security</topic><topic>Stability criteria</topic><topic>Total transfer capability</topic><topic>Training</topic><topic>Transient analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Qiu</creatorcontrib><creatorcontrib>Liu, Youbo</creatorcontrib><creatorcontrib>Zhao, Junbo</creatorcontrib><creatorcontrib>Liu, Junyong</creatorcontrib><creatorcontrib>Chung, Chi Yung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Qiu</au><au>Liu, Youbo</au><au>Zhao, Junbo</au><au>Liu, Junyong</au><au>Chung, Chi Yung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Deep Learning for Dynamic Total Transfer Capability Control</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2021-05</date><risdate>2021</risdate><volume>36</volume><issue>3</issue><spage>2733</spage><epage>2736</epage><pages>2733-2736</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This letter proposes a data-driven hybrid deep learning method for dynamic total transfer capability (TTC) control. It leverages deep learning (DL) to achieve fast prediction of TTC and reduce the problem complexity, while the deep reinforcement learning (DRL) method, e.g., proximal policy optimization (PPO), is enhanced by competitive learning (CL) to obtain a better generalization of the DRL agents. This also allows us to deal with system stochasticity. Comparison results with other model-based alternatives on the IEEE 39-bus system highlight the advantages of the proposed method for variable unseen and insecure scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2021.3057523</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-5257-7280</orcidid><orcidid>https://orcid.org/0000-0002-5465-5243</orcidid><orcidid>https://orcid.org/0000-0001-6607-2240</orcidid><orcidid>https://orcid.org/0000-0002-8498-9666</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2021-05, Vol.36 (3), p.2733-2736
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_2515850037
source IEEE Electronic Library (IEL) Journals
subjects artificial intelligence
Deep learning
deep reinforcement learning
distributed proximal policy optimization
Generators
Optimization
Power system dynamics
Security
Stability criteria
Total transfer capability
Training
Transient analysis
title Hybrid Deep Learning for Dynamic Total Transfer Capability Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Deep%20Learning%20for%20Dynamic%20Total%20Transfer%20Capability%20Control&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Gao,%20Qiu&rft.date=2021-05&rft.volume=36&rft.issue=3&rft.spage=2733&rft.epage=2736&rft.pages=2733-2736&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2021.3057523&rft_dat=%3Cproquest_ieee_%3E2515850037%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-167c5813bada7500362a0a1d18a98ba18b504b1d08d457c447c9923373e201843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2515850037&rft_id=info:pmid/&rft_ieee_id=9349169&rfr_iscdi=true