Loading…

3D-printable engineered cementitious composites (3DP-ECC): Fresh and hardened properties

3D printing (3DP) is an emerging digital construction method for concrete materials. A major impediment to efficient 3D concrete printing (3DCP) is the need for steel reinforcement, the placement of which is incompatible with the 3DP process. Unlike plain concrete, ductile self-reinforced engineered...

Full description

Saved in:
Bibliographic Details
Published in:Cement and concrete research 2021-05, Vol.143, p.106388, Article 106388
Main Authors: Yu, Kequan, McGee, Wes, Ng, Tsz Yan, Zhu, He, Li, Victor C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:3D printing (3DP) is an emerging digital construction method for concrete materials. A major impediment to efficient 3D concrete printing (3DCP) is the need for steel reinforcement, the placement of which is incompatible with the 3DP process. Unlike plain concrete, ductile self-reinforced engineered cementitious composite (ECC) holds promise to remove the dependence on steel reinforcement. The objective of this research is to develop a 3D-printable ECC (3DP-ECC). The fresh rheological and hardened mechanical properties of 3DP-ECC are investigated. The robotically printed tensile specimens demonstrated the familiar multiple microcracking and strain-hardening behavior of conventionally cast ECC. Significant orthotropy is revealed in the compressive properties. The interface between printed layers is found to be toughened by a printed groove-tongue joint. The developed 3DP-ECC was used to print a twisted column with 150 layers, reaching a height of 1.5 m. This research lays the groundwork for efficient robotically 3D-printed structures of complex shapes.
ISSN:0008-8846
1873-3948
DOI:10.1016/j.cemconres.2021.106388