Loading…
3D-printable engineered cementitious composites (3DP-ECC): Fresh and hardened properties
3D printing (3DP) is an emerging digital construction method for concrete materials. A major impediment to efficient 3D concrete printing (3DCP) is the need for steel reinforcement, the placement of which is incompatible with the 3DP process. Unlike plain concrete, ductile self-reinforced engineered...
Saved in:
Published in: | Cement and concrete research 2021-05, Vol.143, p.106388, Article 106388 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 3D printing (3DP) is an emerging digital construction method for concrete materials. A major impediment to efficient 3D concrete printing (3DCP) is the need for steel reinforcement, the placement of which is incompatible with the 3DP process. Unlike plain concrete, ductile self-reinforced engineered cementitious composite (ECC) holds promise to remove the dependence on steel reinforcement. The objective of this research is to develop a 3D-printable ECC (3DP-ECC). The fresh rheological and hardened mechanical properties of 3DP-ECC are investigated. The robotically printed tensile specimens demonstrated the familiar multiple microcracking and strain-hardening behavior of conventionally cast ECC. Significant orthotropy is revealed in the compressive properties. The interface between printed layers is found to be toughened by a printed groove-tongue joint. The developed 3DP-ECC was used to print a twisted column with 150 layers, reaching a height of 1.5 m. This research lays the groundwork for efficient robotically 3D-printed structures of complex shapes. |
---|---|
ISSN: | 0008-8846 1873-3948 |
DOI: | 10.1016/j.cemconres.2021.106388 |