Loading…
A Deep Learning Approach for Predicting Spatiotemporal Dynamics from Sparsely Observed Data
In this paper, we consider the problem of learning prediction models for spatiotemporal physical processes driven by unknown partial differential equations (PDEs). We propose a deep learning framework that learns the underlying dynamics and predicts its evolution using sparsely distributed data site...
Saved in:
Published in: | IEEE access 2021-01, Vol.9, p.1-1 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we consider the problem of learning prediction models for spatiotemporal physical processes driven by unknown partial differential equations (PDEs). We propose a deep learning framework that learns the underlying dynamics and predicts its evolution using sparsely distributed data sites. Deep learning has shown promising results in modeling physical dynamics in recent years. However, most of the existing deep learning methods for modeling physical dynamics either focus on solving known PDEs or require data in a dense grid when the governing PDEs are unknown. In contrast, our method focuses on learning prediction models for unknown PDE-driven dynamics only from sparsely observed data. The proposed method is spatial dimension-independent and geometrically flexible. We demonstrate our method in the forecasting task for the two-dimensional wave equation and the Burgers-Fisher equation in multiple geometries with different boundary conditions, and the ten-dimensional heat equation. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3075899 |