Loading…
The Planar Wide-Frequency Vibration Characteristics of Heavy-Load Radial Tires
This paper investigates the planar wide-frequency vibration characteristics of heavy-load radial tires with a large aspect ratio. A proposed tire model with a piecewise flexible beam on an elastic foundation is investigated and validated using experimental modal analysis and theoretical modeling met...
Saved in:
Published in: | Mathematical problems in engineering 2021, Vol.2021, p.1-20 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper investigates the planar wide-frequency vibration characteristics of heavy-load radial tires with a large aspect ratio. A proposed tire model with a piecewise flexible beam on an elastic foundation is investigated and validated using experimental modal analysis and theoretical modeling method. The reproducibility of frequency response functions below 400 Hz is discussed. The experimental modal analysis particularly assesses the coupling of features across the circumferential and cross-sectional directions of heavy-load radial tire carcass. Piecewise circumferential modal characteristics were investigated experimentally, leading to the suggestion of a piecewise flexible beam on an elastic tire foundation. Using a genetic algorithm (GA), the structural parameters EI, ρA, and kr and damping coefficients η and cr for the proposed tire model are identified, and the piecewise transfer functions and the planar transfer functions for a heavy-load radial tire are compared with planar hammer test. Experimental and theoretical results show the following: (1) the sectional vibration characteristics for a heavy-load radial tire with a large aspect ratio result from the cross-sectional vibration of the tire carcass; (2) the piecewise transfer function is mainly influenced by the circumferential vibration of the flexible carcass, and this is consistent with a model where a flexible beam is placed on an elastic tire foundation; (3) the analytical transfer functions calculated for the proposed tire model, drawing on the identified structural parameters and damping coefficients, agree well with the experimental results. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/5805292 |