Loading…
PPANet: Point-Wise Pyramid Attention Network for Semantic Segmentation
In recent years, convolutional neural networks (CNNs) have been at the centre of the advances and progress of advanced driver assistance systems and autonomous driving. This paper presents a point-wise pyramid attention network, namely, PPANet, which employs an encoder-decoder approach for semantic...
Saved in:
Published in: | Wireless communications and mobile computing 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, convolutional neural networks (CNNs) have been at the centre of the advances and progress of advanced driver assistance systems and autonomous driving. This paper presents a point-wise pyramid attention network, namely, PPANet, which employs an encoder-decoder approach for semantic segmentation. Specifically, the encoder adopts a novel squeeze nonbottleneck module as a base module to extract feature representations, where squeeze and expansion are utilized to obtain high segmentation accuracy. An upsampling module is designed to work as a decoder; its purpose is to recover the lost pixel-wise representations from the encoding part. The middle part consists of two parts point-wise pyramid attention (PPA) module and an attention-like module connected in parallel. The PPA module is proposed to utilize contextual information effectively. Furthermore, we developed a combined loss function from dice loss and binary cross-entropy to improve accuracy and get faster training convergence in KITTI road segmentation. The paper conducted the training and testing experiments on KITTI road segmentation and Camvid datasets, and the evaluation results show that the proposed method proved its effectiveness in road semantic segmentation. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2021/5563875 |