Loading…

Modest capacity of no-till farming to offset emissions over 21st century

‘No-till’ (NT) agriculture, which eliminates nearly all physical disturbance of the soil surface on croplands, has been widely promoted as a means of soil organic carbon (SOC) sequestration with the potential to mitigate climate change. Here we provide the first global estimates of the SOC sequestra...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research letters 2021-05, Vol.16 (5), p.54055
Main Authors: Graham, Michael W, Thomas, R Quinn, Lombardozzi, Danica L, O’Rourke, Megan E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:‘No-till’ (NT) agriculture, which eliminates nearly all physical disturbance of the soil surface on croplands, has been widely promoted as a means of soil organic carbon (SOC) sequestration with the potential to mitigate climate change. Here we provide the first global estimates of the SOC sequestration potential of NT adoption using a global land surface model (LSM). We use an LSM to simulate losses of SOC due to intensive tillage (IT) over the historical time period (1850–2014), followed by future simulations (2015–2100) assessing the SOC sequestration potential of adopting NT globally. Historical losses due to simulated IT practices ranged from 6.8 to 16.8 Gt C, or roughly 5%–13% of the 133 Gt C of global cumulative SOC losses attributable to agriculture reported elsewhere. Cumulative SOC sequestration in NT simulations over the entire 21st century was equivalent to approximately one year of current fossil fuel emissions and ranged between 6.6 and 14.4 Gt C (0.08–0.17 Gt C yr −1 ). Modeled increases in SOC sequestration under NT were concentrated in cool, humid temperate regions, with minimal SOC gains in the tropics. These results indicate that the global potential for SOC sequestration from NT adoption may be more limited than reported in some studies and promoted by policymakers. Our incorporation of tillage practices into an LSM is a major step toward integration of soil tillage as a management practice into LSMs and associated Earth system models. Future work should focus on improving process-understanding of tillage practices and their integration into LSMs, as well as resolving modeled versus observed estimates of SOC sequestration from NT adoption, particularly in the tropics.
ISSN:1748-9326
1748-9326
DOI:10.1088/1748-9326/abe6c6