Loading…

Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras

The concept of weighted infinitesimal unitary bialgebra is an algebraic meaning of the nonhomogenous associative Yang–Baxter equation. In this paper, we equip the space of decorated planar rooted forests with a coproduct which makes it a weighted infinitesimal unitary bialgebra. Further, we construc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebraic combinatorics 2021-05, Vol.53 (3), p.771-803
Main Authors: Zhang, Yi, Gao, Xing, Luo, Yanfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-798f9075a2c788448f3a09ccce7275c83e3b2c1f428482f2cec4b7d36e347f063
container_end_page 803
container_issue 3
container_start_page 771
container_title Journal of algebraic combinatorics
container_volume 53
creator Zhang, Yi
Gao, Xing
Luo, Yanfeng
description The concept of weighted infinitesimal unitary bialgebra is an algebraic meaning of the nonhomogenous associative Yang–Baxter equation. In this paper, we equip the space of decorated planar rooted forests with a coproduct which makes it a weighted infinitesimal unitary bialgebra. Further, we construct an infinitesimal unitary Hopf algebra on decorated planar rooted forests in the sense of Loday and Ronco. We then introduce the concept of symmetric 1-cocycle condition, which is derived from the dual of the Hochschild cohomology. We study the universal properties of the space of decorated planar rooted forests with the symmetric 1-cocycle, leading to the notation of a weighted Ω -cocycle infinitesimal unitary bialgebra. As an application, we obtain the initial object in the category of free cocycle infinitesimal unitary bialgebras on the undecorated planar rooted forests, which is the object studied in the well-known noncommutative Connes–Kreimer Hopf algebra. Finally, we construct a pre-Lie algebra on decorated planar rooted forests.
doi_str_mv 10.1007/s10801-020-00942-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2526315305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2526315305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-798f9075a2c788448f3a09ccce7275c83e3b2c1f428482f2cec4b7d36e347f063</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxFp9AVckbkW5FliaxlvSxI3GJWEYqDTTocJ0MW8vdTTuXJ2z-L5z-QG4JPiGYCxvC8EKE4QpRhhrTpE8AjMiJEWaaHoMZlhTgbTS-hSclbLBlVJEzED77uP6Y_AtjH2IfRx8iVvbwX1tbR5hE2239k22BaYAc0oHNKTsy1CuYRm3Wz_k6KBLbnSdL9D2Ldxlj1bRw1_1HJwE2xV_8VPn4O3h_nX5hFYvj8_LuxVyjPABSa2CxlJY6qRSnKvALNbOOS-pFE4xzxrqSOBUcUUDdd7xRrZs4RmXAS_YHFxNc3c5fe7riWaT9rmvKw0VdMGIYFhUik6Uy6mU7IPZ5fpzHg3B5pCmmdI0NU3znaaRVWKTVCrcr33-G_2P9QVxt3iJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526315305</pqid></control><display><type>article</type><title>Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras</title><source>Springer Nature</source><creator>Zhang, Yi ; Gao, Xing ; Luo, Yanfeng</creator><creatorcontrib>Zhang, Yi ; Gao, Xing ; Luo, Yanfeng</creatorcontrib><description>The concept of weighted infinitesimal unitary bialgebra is an algebraic meaning of the nonhomogenous associative Yang–Baxter equation. In this paper, we equip the space of decorated planar rooted forests with a coproduct which makes it a weighted infinitesimal unitary bialgebra. Further, we construct an infinitesimal unitary Hopf algebra on decorated planar rooted forests in the sense of Loday and Ronco. We then introduce the concept of symmetric 1-cocycle condition, which is derived from the dual of the Hochschild cohomology. We study the universal properties of the space of decorated planar rooted forests with the symmetric 1-cocycle, leading to the notation of a weighted Ω -cocycle infinitesimal unitary bialgebra. As an application, we obtain the initial object in the category of free cocycle infinitesimal unitary bialgebras on the undecorated planar rooted forests, which is the object studied in the well-known noncommutative Connes–Kreimer Hopf algebra. Finally, we construct a pre-Lie algebra on decorated planar rooted forests.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-020-00942-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Decoration ; Forests ; Group Theory and Generalizations ; Homology ; Lattices ; Lie groups ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures</subject><ispartof>Journal of algebraic combinatorics, 2021-05, Vol.53 (3), p.771-803</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-798f9075a2c788448f3a09ccce7275c83e3b2c1f428482f2cec4b7d36e347f063</cites><orcidid>0000-0003-0513-334X ; 0000-0002-2367-2497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Gao, Xing</creatorcontrib><creatorcontrib>Luo, Yanfeng</creatorcontrib><title>Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>The concept of weighted infinitesimal unitary bialgebra is an algebraic meaning of the nonhomogenous associative Yang–Baxter equation. In this paper, we equip the space of decorated planar rooted forests with a coproduct which makes it a weighted infinitesimal unitary bialgebra. Further, we construct an infinitesimal unitary Hopf algebra on decorated planar rooted forests in the sense of Loday and Ronco. We then introduce the concept of symmetric 1-cocycle condition, which is derived from the dual of the Hochschild cohomology. We study the universal properties of the space of decorated planar rooted forests with the symmetric 1-cocycle, leading to the notation of a weighted Ω -cocycle infinitesimal unitary bialgebra. As an application, we obtain the initial object in the category of free cocycle infinitesimal unitary bialgebras on the undecorated planar rooted forests, which is the object studied in the well-known noncommutative Connes–Kreimer Hopf algebra. Finally, we construct a pre-Lie algebra on decorated planar rooted forests.</description><subject>Algebra</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Decoration</subject><subject>Forests</subject><subject>Group Theory and Generalizations</subject><subject>Homology</subject><subject>Lattices</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUhonRxFp9AVckbkW5FliaxlvSxI3GJWEYqDTTocJ0MW8vdTTuXJ2z-L5z-QG4JPiGYCxvC8EKE4QpRhhrTpE8AjMiJEWaaHoMZlhTgbTS-hSclbLBlVJEzED77uP6Y_AtjH2IfRx8iVvbwX1tbR5hE2239k22BaYAc0oHNKTsy1CuYRm3Wz_k6KBLbnSdL9D2Ldxlj1bRw1_1HJwE2xV_8VPn4O3h_nX5hFYvj8_LuxVyjPABSa2CxlJY6qRSnKvALNbOOS-pFE4xzxrqSOBUcUUDdd7xRrZs4RmXAS_YHFxNc3c5fe7riWaT9rmvKw0VdMGIYFhUik6Uy6mU7IPZ5fpzHg3B5pCmmdI0NU3znaaRVWKTVCrcr33-G_2P9QVxt3iJ</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Zhang, Yi</creator><creator>Gao, Xing</creator><creator>Luo, Yanfeng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0513-334X</orcidid><orcidid>https://orcid.org/0000-0002-2367-2497</orcidid></search><sort><creationdate>20210501</creationdate><title>Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras</title><author>Zhang, Yi ; Gao, Xing ; Luo, Yanfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-798f9075a2c788448f3a09ccce7275c83e3b2c1f428482f2cec4b7d36e347f063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Decoration</topic><topic>Forests</topic><topic>Group Theory and Generalizations</topic><topic>Homology</topic><topic>Lattices</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Gao, Xing</creatorcontrib><creatorcontrib>Luo, Yanfeng</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi</au><au>Gao, Xing</au><au>Luo, Yanfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>53</volume><issue>3</issue><spage>771</spage><epage>803</epage><pages>771-803</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>The concept of weighted infinitesimal unitary bialgebra is an algebraic meaning of the nonhomogenous associative Yang–Baxter equation. In this paper, we equip the space of decorated planar rooted forests with a coproduct which makes it a weighted infinitesimal unitary bialgebra. Further, we construct an infinitesimal unitary Hopf algebra on decorated planar rooted forests in the sense of Loday and Ronco. We then introduce the concept of symmetric 1-cocycle condition, which is derived from the dual of the Hochschild cohomology. We study the universal properties of the space of decorated planar rooted forests with the symmetric 1-cocycle, leading to the notation of a weighted Ω -cocycle infinitesimal unitary bialgebra. As an application, we obtain the initial object in the category of free cocycle infinitesimal unitary bialgebras on the undecorated planar rooted forests, which is the object studied in the well-known noncommutative Connes–Kreimer Hopf algebra. Finally, we construct a pre-Lie algebra on decorated planar rooted forests.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-020-00942-7</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-0513-334X</orcidid><orcidid>https://orcid.org/0000-0002-2367-2497</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2021-05, Vol.53 (3), p.771-803
issn 0925-9899
1572-9192
language eng
recordid cdi_proquest_journals_2526315305
source Springer Nature
subjects Algebra
Combinatorics
Computer Science
Convex and Discrete Geometry
Decoration
Forests
Group Theory and Generalizations
Homology
Lattices
Lie groups
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
title Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weighted%20infinitesimal%20unitary%20bialgebras%20of%20rooted%20forests,%20symmetric%20cocycles%20and%20pre-Lie%20algebras&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Zhang,%20Yi&rft.date=2021-05-01&rft.volume=53&rft.issue=3&rft.spage=771&rft.epage=803&rft.pages=771-803&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-020-00942-7&rft_dat=%3Cproquest_cross%3E2526315305%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-798f9075a2c788448f3a09ccce7275c83e3b2c1f428482f2cec4b7d36e347f063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2526315305&rft_id=info:pmid/&rfr_iscdi=true