Loading…
Sturm–Liouville Problems with Transfer Condition Herglotz Dependent on the Eigenparameter: Eigenvalue Asymptotics
We consider a Sturm–Liouville equation ℓ y : = - y ′ ′ + q y = λ y on the intervals ( - a , 0 ) and (0, b ) with a , b > 0 and q ∈ L 2 ( - a , b ) . Boundary conditions y ( - a ) cos α = y ′ ( - a ) sin α , y ( b ) cos β = y ′ ( b ) sin β , where α ∈ [ 0 , π ) and β ∈ ( 0 , π ] , are imposed, to...
Saved in:
Published in: | Complex analysis and operator theory 2021-06, Vol.15 (4), Article 71 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a Sturm–Liouville equation
ℓ
y
:
=
-
y
′
′
+
q
y
=
λ
y
on the intervals
(
-
a
,
0
)
and (0,
b
) with
a
,
b
>
0
and
q
∈
L
2
(
-
a
,
b
)
. Boundary conditions
y
(
-
a
)
cos
α
=
y
′
(
-
a
)
sin
α
,
y
(
b
)
cos
β
=
y
′
(
b
)
sin
β
, where
α
∈
[
0
,
π
)
and
β
∈
(
0
,
π
]
, are imposed, together with transmission conditions rationally-dependent on the eigenparameter via
-
y
(
0
+
)
λ
η
-
ξ
-
∑
i
=
1
N
b
i
2
λ
-
c
i
=
y
′
(
0
+
)
-
y
′
(
0
-
)
,
y
′
(
0
-
)
λ
κ
+
ζ
-
∑
j
=
1
M
a
j
2
λ
-
d
j
=
y
(
0
+
)
-
y
(
0
-
)
,
with
b
i
,
a
j
>
0
for
i
=
1
,
…
,
N
,
and
j
=
1
,
⋯
,
M
. Here we take
η
,
κ
≥
0
and
N
,
M
∈
N
0
. In Bartels et al. (Integr Equ Oper Theory 90(3):1–20, 2018), it was shown that this boundary value problem can be posed as a self-adjoint operator eigenvalue problem in a suitable Hilbert space. In the present work we develop eigenvalue asymptotics for this class of problem. |
---|---|
ISSN: | 1661-8254 1661-8262 |
DOI: | 10.1007/s11785-021-01119-1 |