Loading…
Lidstone–Euler interpolation and related high even order boundary value problem
We consider the Lidstone–Euler interpolation problem and the associated Lidstone–Euler boundary value problem, in both theoretical and computational aspects. After a theorem of existence and uniqueness of the solution to the Lidstone–Euler boundary value problem, we present a numerical method for so...
Saved in:
Published in: | Calcolo 2021-06, Vol.58 (2), Article 25 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the Lidstone–Euler interpolation problem and the associated Lidstone–Euler boundary value problem, in both theoretical and computational aspects. After a theorem of existence and uniqueness of the solution to the Lidstone–Euler boundary value problem, we present a numerical method for solving it. This method uses the extrapolated Bernstein polynomials and produces an approximating convergent polynomial sequence. Particularly, we consider the fourth-order case, arising in various physical models. Finally, we present some numerical examples and we compare the proposed method with a modified decomposition method for a tenth-order problem. The numerical results confirm the theoretical and computational ones. |
---|---|
ISSN: | 0008-0624 1126-5434 |
DOI: | 10.1007/s10092-021-00411-y |