Loading…
Constructing accuracy and diversity ensemble using Pareto-based multi-objective learning for evolving data streams
Ensemble learning is one of the most frequently used techniques for handling concept drift, which is the greatest challenge for learning high-performance models from big evolving data streams. In this paper, a Pareto-based multi-objective optimization technique is introduced to learn high-performanc...
Saved in:
Published in: | Neural computing & applications 2021-06, Vol.33 (11), p.6119-6132 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ensemble learning is one of the most frequently used techniques for handling concept drift, which is the greatest challenge for learning high-performance models from big evolving data streams. In this paper, a Pareto-based multi-objective optimization technique is introduced to learn high-performance base classifiers. Based on this technique, a multi-objective evolutionary ensemble learning scheme, named Pareto-optimal ensemble for a better accuracy and diversity (PAD), is proposed. The approach aims to enhance the generalization ability of ensemble in evolving data stream environment by balancing the accuracy and diversity of ensemble members. In addition, an adaptive window change detection mechanism is designed for tracking different kinds of drifts constantly. Extensive experiments show that PAD is capable of adapting to dynamic change environments effectively and efficiently in achieving better performance. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-020-05386-5 |