Loading…

Comparison of Potential Environmental Impacts and Waste-to-Energy Efficiency for Kitchen Waste Treatment Scenarios in Central Taiwan

Taiwan has a sound solid waste recycling system, and waste-to-energy is attractive under the encouragement policy and economic feasibility, especially in central and southern regions with vast agricultural wastes. The four scenarios evaluated in this study relating to current use or under considerat...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2021-04, Vol.9 (4), p.696
Main Authors: Shih, Meng-Fen, Lin, Chiu-Yue, Lay, Chyi-How
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Taiwan has a sound solid waste recycling system, and waste-to-energy is attractive under the encouragement policy and economic feasibility, especially in central and southern regions with vast agricultural wastes. The four scenarios evaluated in this study relating to current use or under consideration for kitchen waste treatment strategy in Taiwan were incineration, landfill, composting, and anaerobic digestion. These scenarios were compared through life cycle assessment to obtain the most preferable treatment solution. The analysis was based on a functional unit, i.e., 1 metric ton of kitchen waste treated, and considered all impact categories through the CML_IA baseline 2000 method. It has shown that energy recovery had enormous effects on all scenarios with the anaerobic digestion having the highest environmental performance change. A comparison between actual electricity consumption and estimated electricity generation by kitchen waste treatment through anaerobic digestion indicates that decentralized electricity generation was suitable for central Taiwan and could be considered as the energy solution in a short-term context. This study provides an experience in selecting a proper waste-to-energy method with the most negligible environmental impact.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9040696