Loading…
The Fermi gerbe of Weyl semimetals
In the gap topology, the unbounded self-adjoint Fredholm operators on a Hilbert space have third homotopy group the integers. We realise the generator explicitly, using a family of Dirac operators on the half-line, which arises naturally in Weyl semimetals in solid-state physics. A “Fermi gerbe” geo...
Saved in:
Published in: | Letters in mathematical physics 2021-06, Vol.111 (3), Article 72 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the gap topology, the unbounded self-adjoint Fredholm operators on a Hilbert space have third homotopy group the integers. We realise the generator explicitly, using a family of Dirac operators on the half-line, which arises naturally in Weyl semimetals in solid-state physics. A “Fermi gerbe” geometrically encodes how discrete spectral data of the family interpolate between essential spectral gaps. Its non-vanishing Dixmier–Douady invariant protects the integrity of the interpolation, thereby providing topological protection of the Weyl semimetal’s Fermi surface. |
---|---|
ISSN: | 0377-9017 1573-0530 |
DOI: | 10.1007/s11005-021-01414-0 |