Loading…

Research and Development of a Novel TIG Welding Torch for Joining Thin Sheets

This paper aims to develop a novel tungsten inner gas (TIG) welding torch in order to join thin sheets efficiently. Using a narrowing nozzle (constricted nozzle) inside a conventional TIG torch can critically improve the position accuracy of the tungsten electrode and also the arc plasma characteris...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-12, Vol.9 (23), p.5260
Main Authors: Huu Manh, Ngo, Van Anh, Nguyen, Van Tuan, Nguyen, Xu, Bin, Akihisa, Murata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper aims to develop a novel tungsten inner gas (TIG) welding torch in order to join thin sheets efficiently. Using a narrowing nozzle (constricted nozzle) inside a conventional TIG torch can critically improve the position accuracy of the tungsten electrode and also the arc plasma characteristics and heat input density. In order to evaluate the efficiency of this new torch, weld bead appearance and cross-section images were examined by an optical microscope, scanning electron microscope (SEM), and electron back scatter diffraction patterns (EBSD). The results showed that in all cases, the weld bead profile was stable without undercut and burn-through. Full penetration weld was seen. The width of weld bead on the bottom surface was increased much in comparison to conventional TIG welding. However, the results from SEM and EBSD images indicated that in the case of low welding current, the blowholes were found out on the side of the thinner material (SS400). The penetration of SUS430 material to SS400 material was not good. It seems that no fusion of SUS430 material to SS400 at the bottom surface can be seen. Meanwhile, no blowholes were seen in the case of high welding current. The penetration was better, and the fusion was reached on the bottom surface.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9235260