Loading…
Usnic acid: from an ancient lichen derivative to promising biological and nanotechnology applications
Among the various compounds of natural origin, usnic acid (UA) is one of the best studied. It has several pharmacological activities, standing out as an antimicrobial, antitumor, antiviral, and antiparasitic agent, and despite these relevant properties, it is a toxic molecule. In this context, resea...
Saved in:
Published in: | Phytochemistry reviews 2021-06, Vol.20 (3), p.609-630 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Among the various compounds of natural origin, usnic acid (UA) is one of the best studied. It has several pharmacological activities, standing out as an antimicrobial, antitumor, antiviral, and antiparasitic agent, and despite these relevant properties, it is a toxic molecule. In this context, research has driven the development of innovative alternatives, such as their encapsulation in controlled release systems, an attractive tool for pharmaceutical nanotechnology. These systems allow the active ingredient to be released at the optimal yield speed and reduce the dosing regimen. Consequently, they are able to increase therapeutic efficacy by minimizing side effects. Given the above, this paper presents a review of the literature on chemical and biological properties, analytical methods, mechanism of action and toxicology of UA, and discusses the use of nanotechnology as a tool to overcome the obstacles of its pharmacological application. |
---|---|
ISSN: | 1568-7767 1572-980X |
DOI: | 10.1007/s11101-020-09717-1 |