Loading…
A generalized type semigroup and dynamical comparison
In this paper, we construct and study a semigroup associated to an action of a countable discrete group on a compact Hausdorff space that can be regarded as a higher dimensional generalization of the type semigroup. We study when this semigroup is almost unperforated. This leads to a new characteriz...
Saved in:
Published in: | Ergodic theory and dynamical systems 2021-07, Vol.41 (7), p.2148-2165, Article 2148 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we construct and study a semigroup associated to an action of a countable discrete group on a compact Hausdorff space that can be regarded as a higher dimensional generalization of the type semigroup. We study when this semigroup is almost unperforated. This leads to a new characterization of dynamical comparison and thus answers a question of Kerr and Schafhauser. In addition, this paper suggests a definition of comparison for dynamical systems in which neither the acting group is necessarily amenable nor the action is minimal. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2020.28 |