Loading…
Compact illumination system with variable beam direction and beam divergence
Countless approaches to optimise lighting conditions for indoor and outdoor applications are described in the literature by adaptive dimming schemes or control algorithms. Those methods rely on adapting the emitted flux of individual luminaires in order to adjust lighting conditions to varying circu...
Saved in:
Published in: | Lighting research & technology (London, England : 2001) England : 2001), 2021-06, Vol.53 (4), p.345-358 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Countless approaches to optimise lighting conditions for indoor and outdoor applications are described in the literature by adaptive dimming schemes or control algorithms. Those methods rely on adapting the emitted flux of individual luminaires in order to adjust lighting conditions to varying circumstances. Complex illumination requirements are tackled by controlling the output of every independent luminaire. In this case, the innovation is rather in software than in hardware, and such approaches are limited by how the LED fixtures can be manipulated. Lighting fixtures with a tuneable radiation pattern are rare, or these fixtures are rather large. This paper introduces a compact lighting system with a collimated light beam of which the beam direction and beam divergence can be adjusted electronically. To realise this optical functionality, a focus tuneable lens and rotatable mirror are combined with two custom-made aplanatic lenses in front of a compact, high-brightness LED. This paper elaborates the optical design of this novel illumination system and discusses the experimental performance of the realised demonstrator. The system functionality is validated by comparing the experimental lighting performance to optical simulations conducted with ray-tracing software. With the proposed system, a fast and flexible adaptation of the generated illumination distribution is possible. |
---|---|
ISSN: | 1477-1535 1477-0938 |
DOI: | 10.1177/1477153520965911 |