Loading…
Feature Reinforcement Learning: Part II. Structured MDPs
The Feature Markov Decision Processes ( MDPs) model developed in Part I (Hutter, 2009b) is well-suited for learning agents in general environments. Nevertheless, unstructured (Φ)MDPs are limited to relatively simple environments. Structured MDPs like Dynamic Bayesian Networks (DBNs) are used for lar...
Saved in:
Published in: | Journal of artificial general intelligence 2021-01, Vol.12 (1), p.71-86 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Feature Markov Decision Processes ( MDPs) model developed in Part I (Hutter, 2009b) is well-suited for learning agents in general environments. Nevertheless, unstructured (Φ)MDPs are limited to relatively simple environments. Structured MDPs like Dynamic Bayesian Networks (DBNs) are used for large-scale real-world problems. In this article I extend ΦMDP to ΦDBN. The primary contribution is to derive a cost criterion that allows to automatically extract the most relevant features from the environment, leading to the “best” DBN representation. I discuss all building blocks required for a complete general learning algorithm, and compare the novel ΦDBN model to the prevalent POMDP approach. |
---|---|
ISSN: | 1946-0163 1946-0163 |
DOI: | 10.2478/jagi-2021-0003 |