Loading…
Boosting Simulation of High Efficiency Alternative Combustion Mode Engines
Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pi...
Saved in:
Published in: | SAE International Journal of Engines 2011-01, Vol.4 (1), p.375-393, Article 2011-01-0358 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3 |
container_end_page | 393 |
container_issue | 1 |
container_start_page | 375 |
container_title | SAE International Journal of Engines |
container_volume | 4 |
creator | Chadwell, Christopher Alger, Terrence Roberts, Charles Arnold, Steven |
description | Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE.
For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%. None of the alternative combustion modes was able to exceed the BTE of a traditional lean burn diesel engine with EGR when calibrated to 2.7 g/kW-h engine-out NOx when constrained by currently available turbocharger efficiency. |
doi_str_mv | 10.4271/2011-01-0358 |
format | article |
fullrecord | <record><control><sourceid>jstor_AFWRR</sourceid><recordid>TN_cdi_proquest_journals_2540568954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26278157</jstor_id><sourcerecordid>26278157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3</originalsourceid><addsrcrecordid>eNpd0M1LwzAYBvAiCs7pzatQ8ODFaj6aNj3OMZ0y8aCeQ5q-2TK6ZDatsP_ezI4NhRcSeH8kD08UXWJ0l5Ic3xOEcYLCUMaPogEu0iyhRZoe7-80O43OvF8ilOWIokH08uCcb42dx-9m1dWyNc7GTsdTM1_EE62NMmDVJh7VLTQ2rL8hHrtV2flf-eoqiCd2biz48-hEy9rDxe4cRp-Pk4_xNJm9PT2PR7NEUcbaRHNWEUAZlarAQIu8IJiVOuWAK64hlZSwIsMl8CqnOVYZ1VoB4pjQnJRVRYfRdf_uunFfHfhWLF0XstVeEJYilvGCpUHd9ko1zvsGtFg3ZiWbjcBIbNsS27YEChPaCvym516CaEEtrFGyXss1NP6_TA7S2F0tLvx_iPHXX_V-6VvX7FOQjOQcs5z-AN2ogac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540568954</pqid></control><display><type>article</type><title>Boosting Simulation of High Efficiency Alternative Combustion Mode Engines</title><source>SAE Technical Papers, 1998-Current</source><creator>Chadwell, Christopher ; Alger, Terrence ; Roberts, Charles ; Arnold, Steven</creator><creatorcontrib>Chadwell, Christopher ; Alger, Terrence ; Roberts, Charles ; Arnold, Steven</creatorcontrib><description>Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE.
For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%. None of the alternative combustion modes was able to exceed the BTE of a traditional lean burn diesel engine with EGR when calibrated to 2.7 g/kW-h engine-out NOx when constrained by currently available turbocharger efficiency.</description><identifier>ISSN: 1946-3936</identifier><identifier>ISSN: 1946-3944</identifier><identifier>EISSN: 1946-3944</identifier><identifier>DOI: 10.4271/2011-01-0358</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Air compressors ; Chemical reduction ; Combustion ; Combustion efficiency ; Diesel engines ; Diesel fuels ; Dilution ; Efficiency ; Engines ; Fuel combustion ; Fuel efficiency ; Gasoline ; Ignition ; Modeling ; Selective catalytic reduction ; Superchargers ; Thermodynamic efficiency ; Turbines</subject><ispartof>SAE International Journal of Engines, 2011-01, Vol.4 (1), p.375-393, Article 2011-01-0358</ispartof><rights>Copyright © 2011 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3</citedby><cites>FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26278157$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26278157$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,10621,26341,27923,27924,58237,58470,79353,79356</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.4271/2011-01-0358$$EView_record_in_SAE_Mobilus$$FView_record_in_$$GSAE_Mobilus</linktorsrc></links><search><creatorcontrib>Chadwell, Christopher</creatorcontrib><creatorcontrib>Alger, Terrence</creatorcontrib><creatorcontrib>Roberts, Charles</creatorcontrib><creatorcontrib>Arnold, Steven</creatorcontrib><title>Boosting Simulation of High Efficiency Alternative Combustion Mode Engines</title><title>SAE International Journal of Engines</title><description>Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE.
For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%. None of the alternative combustion modes was able to exceed the BTE of a traditional lean burn diesel engine with EGR when calibrated to 2.7 g/kW-h engine-out NOx when constrained by currently available turbocharger efficiency.</description><subject>Air compressors</subject><subject>Chemical reduction</subject><subject>Combustion</subject><subject>Combustion efficiency</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Dilution</subject><subject>Efficiency</subject><subject>Engines</subject><subject>Fuel combustion</subject><subject>Fuel efficiency</subject><subject>Gasoline</subject><subject>Ignition</subject><subject>Modeling</subject><subject>Selective catalytic reduction</subject><subject>Superchargers</subject><subject>Thermodynamic efficiency</subject><subject>Turbines</subject><issn>1946-3936</issn><issn>1946-3944</issn><issn>1946-3944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFWRR</sourceid><recordid>eNpd0M1LwzAYBvAiCs7pzatQ8ODFaj6aNj3OMZ0y8aCeQ5q-2TK6ZDatsP_ezI4NhRcSeH8kD08UXWJ0l5Ic3xOEcYLCUMaPogEu0iyhRZoe7-80O43OvF8ilOWIokH08uCcb42dx-9m1dWyNc7GTsdTM1_EE62NMmDVJh7VLTQ2rL8hHrtV2flf-eoqiCd2biz48-hEy9rDxe4cRp-Pk4_xNJm9PT2PR7NEUcbaRHNWEUAZlarAQIu8IJiVOuWAK64hlZSwIsMl8CqnOVYZ1VoB4pjQnJRVRYfRdf_uunFfHfhWLF0XstVeEJYilvGCpUHd9ko1zvsGtFg3ZiWbjcBIbNsS27YEChPaCvym516CaEEtrFGyXss1NP6_TA7S2F0tLvx_iPHXX_V-6VvX7FOQjOQcs5z-AN2ogac</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Chadwell, Christopher</creator><creator>Alger, Terrence</creator><creator>Roberts, Charles</creator><creator>Arnold, Steven</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AFWRR</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110101</creationdate><title>Boosting Simulation of High Efficiency Alternative Combustion Mode Engines</title><author>Chadwell, Christopher ; Alger, Terrence ; Roberts, Charles ; Arnold, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air compressors</topic><topic>Chemical reduction</topic><topic>Combustion</topic><topic>Combustion efficiency</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Dilution</topic><topic>Efficiency</topic><topic>Engines</topic><topic>Fuel combustion</topic><topic>Fuel efficiency</topic><topic>Gasoline</topic><topic>Ignition</topic><topic>Modeling</topic><topic>Selective catalytic reduction</topic><topic>Superchargers</topic><topic>Thermodynamic efficiency</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chadwell, Christopher</creatorcontrib><creatorcontrib>Alger, Terrence</creatorcontrib><creatorcontrib>Roberts, Charles</creatorcontrib><creatorcontrib>Arnold, Steven</creatorcontrib><collection>SAE Technical Papers, 1998-Current</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>SAE International Journal of Engines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chadwell, Christopher</au><au>Alger, Terrence</au><au>Roberts, Charles</au><au>Arnold, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Simulation of High Efficiency Alternative Combustion Mode Engines</atitle><jtitle>SAE International Journal of Engines</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>4</volume><issue>1</issue><spage>375</spage><epage>393</epage><pages>375-393</pages><artnum>2011-01-0358</artnum><issn>1946-3936</issn><issn>1946-3944</issn><eissn>1946-3944</eissn><abstract>Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE.
For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%. None of the alternative combustion modes was able to exceed the BTE of a traditional lean burn diesel engine with EGR when calibrated to 2.7 g/kW-h engine-out NOx when constrained by currently available turbocharger efficiency.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2011-01-0358</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1946-3936 |
ispartof | SAE International Journal of Engines, 2011-01, Vol.4 (1), p.375-393, Article 2011-01-0358 |
issn | 1946-3936 1946-3944 1946-3944 |
language | eng |
recordid | cdi_proquest_journals_2540568954 |
source | SAE Technical Papers, 1998-Current |
subjects | Air compressors Chemical reduction Combustion Combustion efficiency Diesel engines Diesel fuels Dilution Efficiency Engines Fuel combustion Fuel efficiency Gasoline Ignition Modeling Selective catalytic reduction Superchargers Thermodynamic efficiency Turbines |
title | Boosting Simulation of High Efficiency Alternative Combustion Mode Engines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_AFWRR&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Simulation%20of%20High%20Efficiency%20Alternative%20Combustion%20Mode%20Engines&rft.jtitle=SAE%20International%20Journal%20of%20Engines&rft.au=Chadwell,%20Christopher&rft.date=2011-01-01&rft.volume=4&rft.issue=1&rft.spage=375&rft.epage=393&rft.pages=375-393&rft.artnum=2011-01-0358&rft.issn=1946-3936&rft.eissn=1946-3944&rft_id=info:doi/10.4271/2011-01-0358&rft_dat=%3Cjstor_AFWRR%3E26278157%3C/jstor_AFWRR%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540568954&rft_id=info:pmid/&rft_jstor_id=26278157&rfr_iscdi=true |