Loading…

Boosting Simulation of High Efficiency Alternative Combustion Mode Engines

Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pi...

Full description

Saved in:
Bibliographic Details
Published in:SAE International Journal of Engines 2011-01, Vol.4 (1), p.375-393, Article 2011-01-0358
Main Authors: Chadwell, Christopher, Alger, Terrence, Roberts, Charles, Arnold, Steven
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3
cites cdi_FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3
container_end_page 393
container_issue 1
container_start_page 375
container_title SAE International Journal of Engines
container_volume 4
creator Chadwell, Christopher
Alger, Terrence
Roberts, Charles
Arnold, Steven
description Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE. For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%. None of the alternative combustion modes was able to exceed the BTE of a traditional lean burn diesel engine with EGR when calibrated to 2.7 g/kW-h engine-out NOx when constrained by currently available turbocharger efficiency.
doi_str_mv 10.4271/2011-01-0358
format article
fullrecord <record><control><sourceid>jstor_AFWRR</sourceid><recordid>TN_cdi_proquest_journals_2540568954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26278157</jstor_id><sourcerecordid>26278157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3</originalsourceid><addsrcrecordid>eNpd0M1LwzAYBvAiCs7pzatQ8ODFaj6aNj3OMZ0y8aCeQ5q-2TK6ZDatsP_ezI4NhRcSeH8kD08UXWJ0l5Ic3xOEcYLCUMaPogEu0iyhRZoe7-80O43OvF8ilOWIokH08uCcb42dx-9m1dWyNc7GTsdTM1_EE62NMmDVJh7VLTQ2rL8hHrtV2flf-eoqiCd2biz48-hEy9rDxe4cRp-Pk4_xNJm9PT2PR7NEUcbaRHNWEUAZlarAQIu8IJiVOuWAK64hlZSwIsMl8CqnOVYZ1VoB4pjQnJRVRYfRdf_uunFfHfhWLF0XstVeEJYilvGCpUHd9ko1zvsGtFg3ZiWbjcBIbNsS27YEChPaCvym516CaEEtrFGyXss1NP6_TA7S2F0tLvx_iPHXX_V-6VvX7FOQjOQcs5z-AN2ogac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2540568954</pqid></control><display><type>article</type><title>Boosting Simulation of High Efficiency Alternative Combustion Mode Engines</title><source>SAE Technical Papers, 1998-Current</source><creator>Chadwell, Christopher ; Alger, Terrence ; Roberts, Charles ; Arnold, Steven</creator><creatorcontrib>Chadwell, Christopher ; Alger, Terrence ; Roberts, Charles ; Arnold, Steven</creatorcontrib><description>Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE. For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%. None of the alternative combustion modes was able to exceed the BTE of a traditional lean burn diesel engine with EGR when calibrated to 2.7 g/kW-h engine-out NOx when constrained by currently available turbocharger efficiency.</description><identifier>ISSN: 1946-3936</identifier><identifier>ISSN: 1946-3944</identifier><identifier>EISSN: 1946-3944</identifier><identifier>DOI: 10.4271/2011-01-0358</identifier><language>eng</language><publisher>Warrendale: SAE International</publisher><subject>Air compressors ; Chemical reduction ; Combustion ; Combustion efficiency ; Diesel engines ; Diesel fuels ; Dilution ; Efficiency ; Engines ; Fuel combustion ; Fuel efficiency ; Gasoline ; Ignition ; Modeling ; Selective catalytic reduction ; Superchargers ; Thermodynamic efficiency ; Turbines</subject><ispartof>SAE International Journal of Engines, 2011-01, Vol.4 (1), p.375-393, Article 2011-01-0358</ispartof><rights>Copyright © 2011 SAE International</rights><rights>Copyright SAE International, a Pennsylvania Not-for Profit 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3</citedby><cites>FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26278157$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26278157$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,10621,26341,27923,27924,58237,58470,79353,79356</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.4271/2011-01-0358$$EView_record_in_SAE_Mobilus$$FView_record_in_$$GSAE_Mobilus</linktorsrc></links><search><creatorcontrib>Chadwell, Christopher</creatorcontrib><creatorcontrib>Alger, Terrence</creatorcontrib><creatorcontrib>Roberts, Charles</creatorcontrib><creatorcontrib>Arnold, Steven</creatorcontrib><title>Boosting Simulation of High Efficiency Alternative Combustion Mode Engines</title><title>SAE International Journal of Engines</title><description>Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE. For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%. None of the alternative combustion modes was able to exceed the BTE of a traditional lean burn diesel engine with EGR when calibrated to 2.7 g/kW-h engine-out NOx when constrained by currently available turbocharger efficiency.</description><subject>Air compressors</subject><subject>Chemical reduction</subject><subject>Combustion</subject><subject>Combustion efficiency</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Dilution</subject><subject>Efficiency</subject><subject>Engines</subject><subject>Fuel combustion</subject><subject>Fuel efficiency</subject><subject>Gasoline</subject><subject>Ignition</subject><subject>Modeling</subject><subject>Selective catalytic reduction</subject><subject>Superchargers</subject><subject>Thermodynamic efficiency</subject><subject>Turbines</subject><issn>1946-3936</issn><issn>1946-3944</issn><issn>1946-3944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFWRR</sourceid><recordid>eNpd0M1LwzAYBvAiCs7pzatQ8ODFaj6aNj3OMZ0y8aCeQ5q-2TK6ZDatsP_ezI4NhRcSeH8kD08UXWJ0l5Ic3xOEcYLCUMaPogEu0iyhRZoe7-80O43OvF8ilOWIokH08uCcb42dx-9m1dWyNc7GTsdTM1_EE62NMmDVJh7VLTQ2rL8hHrtV2flf-eoqiCd2biz48-hEy9rDxe4cRp-Pk4_xNJm9PT2PR7NEUcbaRHNWEUAZlarAQIu8IJiVOuWAK64hlZSwIsMl8CqnOVYZ1VoB4pjQnJRVRYfRdf_uunFfHfhWLF0XstVeEJYilvGCpUHd9ko1zvsGtFg3ZiWbjcBIbNsS27YEChPaCvym516CaEEtrFGyXss1NP6_TA7S2F0tLvx_iPHXX_V-6VvX7FOQjOQcs5z-AN2ogac</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Chadwell, Christopher</creator><creator>Alger, Terrence</creator><creator>Roberts, Charles</creator><creator>Arnold, Steven</creator><general>SAE International</general><general>SAE International, a Pennsylvania Not-for Profit</general><scope>AFWRR</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110101</creationdate><title>Boosting Simulation of High Efficiency Alternative Combustion Mode Engines</title><author>Chadwell, Christopher ; Alger, Terrence ; Roberts, Charles ; Arnold, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air compressors</topic><topic>Chemical reduction</topic><topic>Combustion</topic><topic>Combustion efficiency</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Dilution</topic><topic>Efficiency</topic><topic>Engines</topic><topic>Fuel combustion</topic><topic>Fuel efficiency</topic><topic>Gasoline</topic><topic>Ignition</topic><topic>Modeling</topic><topic>Selective catalytic reduction</topic><topic>Superchargers</topic><topic>Thermodynamic efficiency</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chadwell, Christopher</creatorcontrib><creatorcontrib>Alger, Terrence</creatorcontrib><creatorcontrib>Roberts, Charles</creatorcontrib><creatorcontrib>Arnold, Steven</creatorcontrib><collection>SAE Technical Papers, 1998-Current</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>SAE International Journal of Engines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chadwell, Christopher</au><au>Alger, Terrence</au><au>Roberts, Charles</au><au>Arnold, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Simulation of High Efficiency Alternative Combustion Mode Engines</atitle><jtitle>SAE International Journal of Engines</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>4</volume><issue>1</issue><spage>375</spage><epage>393</epage><pages>375-393</pages><artnum>2011-01-0358</artnum><issn>1946-3936</issn><issn>1946-3944</issn><eissn>1946-3944</eissn><abstract>Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE. For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%. None of the alternative combustion modes was able to exceed the BTE of a traditional lean burn diesel engine with EGR when calibrated to 2.7 g/kW-h engine-out NOx when constrained by currently available turbocharger efficiency.</abstract><cop>Warrendale</cop><pub>SAE International</pub><doi>10.4271/2011-01-0358</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1946-3936
ispartof SAE International Journal of Engines, 2011-01, Vol.4 (1), p.375-393, Article 2011-01-0358
issn 1946-3936
1946-3944
1946-3944
language eng
recordid cdi_proquest_journals_2540568954
source SAE Technical Papers, 1998-Current
subjects Air compressors
Chemical reduction
Combustion
Combustion efficiency
Diesel engines
Diesel fuels
Dilution
Efficiency
Engines
Fuel combustion
Fuel efficiency
Gasoline
Ignition
Modeling
Selective catalytic reduction
Superchargers
Thermodynamic efficiency
Turbines
title Boosting Simulation of High Efficiency Alternative Combustion Mode Engines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_AFWRR&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Simulation%20of%20High%20Efficiency%20Alternative%20Combustion%20Mode%20Engines&rft.jtitle=SAE%20International%20Journal%20of%20Engines&rft.au=Chadwell,%20Christopher&rft.date=2011-01-01&rft.volume=4&rft.issue=1&rft.spage=375&rft.epage=393&rft.pages=375-393&rft.artnum=2011-01-0358&rft.issn=1946-3936&rft.eissn=1946-3944&rft_id=info:doi/10.4271/2011-01-0358&rft_dat=%3Cjstor_AFWRR%3E26278157%3C/jstor_AFWRR%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-f85d2e063ac91e3979215bf48e1d8fe4a325961be8d7371c63ffce0812372bdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2540568954&rft_id=info:pmid/&rft_jstor_id=26278157&rfr_iscdi=true