Loading…
Influential Rank: A New Perspective of Post-training for Robust Model against Noisy Labels
Deep neural network can easily overfit to even noisy labels due to its high capacity, which degrades the generalization performance of a model. To overcome this issue, we propose a new approach for learning from noisy labels (LNL) via post-training, which can significantly improve the generalization...
Saved in:
Published in: | arXiv.org 2023-04 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep neural network can easily overfit to even noisy labels due to its high capacity, which degrades the generalization performance of a model. To overcome this issue, we propose a new approach for learning from noisy labels (LNL) via post-training, which can significantly improve the generalization performance of any pre-trained model on noisy label data. To this end, we rather exploit the overfitting property of a trained model to identify mislabeled samples. Specifically, our post-training approach gradually removes samples with high influence on the decision boundary and refines the decision boundary to improve generalization performance. Our post-training approach creates great synergies when combined with the existing LNL methods. Experimental results on various real-world and synthetic benchmark datasets demonstrate the validity of our approach in diverse realistic scenarios. |
---|---|
ISSN: | 2331-8422 |