Loading…
Nonemptiness and Compactness of Solution Sets to Weakly Homogeneous Generalized Variational Inequalities
In this paper, we deal with the weakly homogeneous generalized variational inequality, which provides a unified setting for several special variational inequalities and complementarity problems studied in recent years. By exploiting weakly homogeneous structures of involved map pairs and using degre...
Saved in:
Published in: | Journal of optimization theory and applications 2021-06, Vol.189 (3), p.919-937 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we deal with the weakly homogeneous generalized variational inequality, which provides a unified setting for several special variational inequalities and complementarity problems studied in recent years. By exploiting weakly homogeneous structures of involved map pairs and using degree theory, we establish a result which demonstrates the connection between weakly homogeneous generalized variational inequalities and weakly homogeneous generalized complementarity problems. Subsequently, we obtain a result on the nonemptiness and compactness of solution sets to weakly homogeneous generalized variational inequalities by utilizing Harker–Pang-type condition, which can lead to a Hartman–Stampacchia-type existence theorem. Last, we give several copositivity results for weakly homogeneous generalized variational inequalities, which can reduce to some existing ones. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-021-01866-3 |