Loading…
Gap Traversing Motion via a Hexapod Tracked Mobile Robot Based on Gap Width Detection
The authors developed a hexapod tracked mobile robot: a tracked mobile robot which is equipped with six legs attached to the robot’s body. In a transportation task, this robot can traverse a wide gap by supporting track driving with four front and rear legs while holding the target object with its t...
Saved in:
Published in: | Journal of robotics and mechatronics 2021-06, Vol.33 (3), p.665-675 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The authors developed a hexapod tracked mobile robot: a tracked mobile robot which is equipped with six legs attached to the robot’s body. In a transportation task, this robot can traverse a wide gap by supporting track driving with four front and rear legs while holding the target object with its two middle legs. To realize autonomous actions with this robot, we developed a two-dimensional distance measurement system using an infrared sensor. This system is very simple, with the sensor attached to a servomotor, such that it does not require high computing power for measurement. In addition, the system can be equipped at a lower cost than laser range finders and depth cameras. This paper describes the selection of the gap traversing mode according to gap width detected by the system. In this study, we conducted a gap width detection experiment and an autonomous gap traversing experiment using the hexapod tracked mobile robot with the proposed system. The obtained results confirm the effectiveness of the proposed system and autonomous traversing, which corresponds with the gap width detection. |
---|---|
ISSN: | 0915-3942 1883-8049 |
DOI: | 10.20965/jrm.2021.p0665 |