Loading…
Hole dissections for planar figures
A geometric dissection is a cutting of a geometric figure (or a finite set of figures) into pieces that we can rearrange to form another geometric figure (or finite set of figures). If our figures are required to be polygons, then there is always a dissection that has just a finite number of pieces....
Saved in:
Published in: | Mathematical gazette 2021-07, Vol.105 (563), p.237-244 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A geometric dissection is a cutting of a geometric figure (or a finite set of figures) into pieces that we can rearrange to form another geometric figure (or finite set of figures). If our figures are required to be polygons, then there is always a dissection that has just a finite number of pieces. This was established by John Lowry [1], William Wallace [2], Farkas Bolyai [3], and Karl Gerwien [4]. The American Sam Loyd [5] and the Englishman Henry Ernest Dudeney [6, 7] emphasised the goal of minimising the number of pieces that resulted from such a standard dissection. |
---|---|
ISSN: | 0025-5572 2056-6328 |
DOI: | 10.1017/mag.2021.52 |