Loading…
Measuring Abundance with Abundancy Index
A positive integer \(n\) is called perfect if \( \sigma(n)=2n\), where \(\sigma(n)\) denote the sum of divisors of \(n\). In this paper we study the ratio \(\frac{\sigma(n)}{n}\). We define the function Abundancy Index \(I:\mathbb{N} \to \mathbb{Q}\) with \(I(n)=\frac{\sigma(n)}{n}\). Then we study...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A positive integer \(n\) is called perfect if \( \sigma(n)=2n\), where \(\sigma(n)\) denote the sum of divisors of \(n\). In this paper we study the ratio \(\frac{\sigma(n)}{n}\). We define the function Abundancy Index \(I:\mathbb{N} \to \mathbb{Q}\) with \(I(n)=\frac{\sigma(n)}{n}\). Then we study different properties of the Abundancy Index and discuss the set of Abundancy Index. Using this function we define a new class of numbers known as superabundant numbers. Finally, we study superabundant numbers and their connection with Riemann Hypothesis. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2106.08994 |