Loading…

Measuring Abundance with Abundancy Index

A positive integer \(n\) is called perfect if \( \sigma(n)=2n\), where \(\sigma(n)\) denote the sum of divisors of \(n\). In this paper we study the ratio \(\frac{\sigma(n)}{n}\). We define the function Abundancy Index \(I:\mathbb{N} \to \mathbb{Q}\) with \(I(n)=\frac{\sigma(n)}{n}\). Then we study...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-08
Main Authors: Guha, Kalpok, Ghosh, Sourangshu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Guha, Kalpok
Ghosh, Sourangshu
description A positive integer \(n\) is called perfect if \( \sigma(n)=2n\), where \(\sigma(n)\) denote the sum of divisors of \(n\). In this paper we study the ratio \(\frac{\sigma(n)}{n}\). We define the function Abundancy Index \(I:\mathbb{N} \to \mathbb{Q}\) with \(I(n)=\frac{\sigma(n)}{n}\). Then we study different properties of the Abundancy Index and discuss the set of Abundancy Index. Using this function we define a new class of numbers known as superabundant numbers. Finally, we study superabundant numbers and their connection with Riemann Hypothesis.
doi_str_mv 10.48550/arxiv.2106.08994
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2543473307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543473307</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-8b690e6538efe46e101bfa4188ffef518a68d80ceebb524e6ac97461337be393</originalsourceid><addsrcrecordid>eNo9jctKAzEUQIMgWGo_oLsBN25mvMnN42ZZio9CxYXdl2TmRqdIqpOO1r9XsLg6nM05QswlNJqMgZswHPvPRkmwDZD3-kxMFKKsSSt1IWal7ABAWaeMwYm4fuRQxqHPL9UijrkLueXqqz-8_ut3tcodHy_FeQpvhWcnTsXz3e1m-VCvn-5Xy8W6Dka5mqL1wNYgcWJtWYKMKWhJlBInIylY6gha5hiN0mxD6522EtFFRo9TcfVXfR_2HyOXw3a3H4f8O9wqo1E7RHD4A0dwQZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543473307</pqid></control><display><type>article</type><title>Measuring Abundance with Abundancy Index</title><source>Publicly Available Content Database</source><creator>Guha, Kalpok ; Ghosh, Sourangshu</creator><creatorcontrib>Guha, Kalpok ; Ghosh, Sourangshu</creatorcontrib><description>A positive integer \(n\) is called perfect if \( \sigma(n)=2n\), where \(\sigma(n)\) denote the sum of divisors of \(n\). In this paper we study the ratio \(\frac{\sigma(n)}{n}\). We define the function Abundancy Index \(I:\mathbb{N} \to \mathbb{Q}\) with \(I(n)=\frac{\sigma(n)}{n}\). Then we study different properties of the Abundancy Index and discuss the set of Abundancy Index. Using this function we define a new class of numbers known as superabundant numbers. Finally, we study superabundant numbers and their connection with Riemann Hypothesis.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2106.08994</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Numbers</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2543473307?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Guha, Kalpok</creatorcontrib><creatorcontrib>Ghosh, Sourangshu</creatorcontrib><title>Measuring Abundance with Abundancy Index</title><title>arXiv.org</title><description>A positive integer \(n\) is called perfect if \( \sigma(n)=2n\), where \(\sigma(n)\) denote the sum of divisors of \(n\). In this paper we study the ratio \(\frac{\sigma(n)}{n}\). We define the function Abundancy Index \(I:\mathbb{N} \to \mathbb{Q}\) with \(I(n)=\frac{\sigma(n)}{n}\). Then we study different properties of the Abundancy Index and discuss the set of Abundancy Index. Using this function we define a new class of numbers known as superabundant numbers. Finally, we study superabundant numbers and their connection with Riemann Hypothesis.</description><subject>Numbers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9jctKAzEUQIMgWGo_oLsBN25mvMnN42ZZio9CxYXdl2TmRqdIqpOO1r9XsLg6nM05QswlNJqMgZswHPvPRkmwDZD3-kxMFKKsSSt1IWal7ABAWaeMwYm4fuRQxqHPL9UijrkLueXqqz-8_ut3tcodHy_FeQpvhWcnTsXz3e1m-VCvn-5Xy8W6Dka5mqL1wNYgcWJtWYKMKWhJlBInIylY6gha5hiN0mxD6522EtFFRo9TcfVXfR_2HyOXw3a3H4f8O9wqo1E7RHD4A0dwQZA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Guha, Kalpok</creator><creator>Ghosh, Sourangshu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210801</creationdate><title>Measuring Abundance with Abundancy Index</title><author>Guha, Kalpok ; Ghosh, Sourangshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-8b690e6538efe46e101bfa4188ffef518a68d80ceebb524e6ac97461337be393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Numbers</topic><toplevel>online_resources</toplevel><creatorcontrib>Guha, Kalpok</creatorcontrib><creatorcontrib>Ghosh, Sourangshu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guha, Kalpok</au><au>Ghosh, Sourangshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring Abundance with Abundancy Index</atitle><jtitle>arXiv.org</jtitle><date>2021-08-01</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>A positive integer \(n\) is called perfect if \( \sigma(n)=2n\), where \(\sigma(n)\) denote the sum of divisors of \(n\). In this paper we study the ratio \(\frac{\sigma(n)}{n}\). We define the function Abundancy Index \(I:\mathbb{N} \to \mathbb{Q}\) with \(I(n)=\frac{\sigma(n)}{n}\). Then we study different properties of the Abundancy Index and discuss the set of Abundancy Index. Using this function we define a new class of numbers known as superabundant numbers. Finally, we study superabundant numbers and their connection with Riemann Hypothesis.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2106.08994</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2543473307
source Publicly Available Content Database
subjects Numbers
title Measuring Abundance with Abundancy Index
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20Abundance%20with%20Abundancy%20Index&rft.jtitle=arXiv.org&rft.au=Guha,%20Kalpok&rft.date=2021-08-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2106.08994&rft_dat=%3Cproquest%3E2543473307%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-8b690e6538efe46e101bfa4188ffef518a68d80ceebb524e6ac97461337be393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2543473307&rft_id=info:pmid/&rfr_iscdi=true