Loading…
Finite frequency range robust iterative learning control of linear discrete system with multiple time-delays
This paper uses repetitive process stability theory to design robust iterative learning control law for linear discrete systems with multiple time-delays and polytopic uncertainty. Both dynamic and static forms of the control law are considered and used when designing robust iterative learning contr...
Saved in:
Published in: | Journal of the Franklin Institute 2019-03, Vol.356 (5), p.2690-2708 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper uses repetitive process stability theory to design robust iterative learning control law for linear discrete systems with multiple time-delays and polytopic uncertainty. Both dynamic and static forms of the control law are considered and used when designing robust iterative learning control schemes. Also, based on the generalized Kalman-Yakubovich-Popov Lemma, the proposed design procedures a required frequency attenuation over a finite frequency range and the monotonic trial-to-trial error convergence. Moreover, linear matrix inequality techniques are applied to formulate the convergence conditions and to obtain formulas for the control law designs. Finally, an illustrative numerical simulation example is given and concludes the paper. |
---|---|
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2019.01.040 |