Loading…

Non-equilibrium Dynamics of a Double-well Bose–Einstein Condensate-dual Reservoir System

We have studied the dynamics of a two-site Bose–Einstein condensate subject to tunnelling coupling (which makes the system a bosonic Josephson junction), having on-site inter-particle interaction (making the system a small Bose–Hubbard model) and in contact with two separate heat baths, which makes...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of physics 2021-08, Vol.51 (4), p.944-953
Main Authors: Rajagopal, Kalai K., Ibragimov, Gafurjan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have studied the dynamics of a two-site Bose–Einstein condensate subject to tunnelling coupling (which makes the system a bosonic Josephson junction), having on-site inter-particle interaction (making the system a small Bose–Hubbard model) and in contact with two separate heat baths, which makes the system lossy and potentially drives it into a non-equilibrium state with some heat current. The dynamical calculation of the system is done within the standard quantum generalized Langevin setting, and the heat baths are assumed to have non-zero memory time (Ornstein–Uhlenbeck process). We numerically calculated the time evolution of the population imbalance, coherence and entanglement of the system. We have shown inter-particle interaction, noise and dissipation induced by BEC atoms-reservoir interaction that are crucial in affecting the dynamics of the mentioned physical parameters. The study also indicates that quantumness (non-classicality) of the system is characterized by the interplay between dissipation and inter-particle interaction.
ISSN:0103-9733
1678-4448
DOI:10.1007/s13538-021-00904-9