Loading…

Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification

Automatic modulation classification is an essential and challenging topic in the development of cognitive radios, and it is the cornerstone of adaptive modulation and demodulation abilities to sense and learn surrounding environments and make corresponding decisions. In this paper, we propose a spec...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2021-07, Vol.33 (13), p.7723-7745
Main Authors: Zheng, Qinghe, Zhao, Penghui, Li, Yang, Wang, Hongjun, Yang, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Automatic modulation classification is an essential and challenging topic in the development of cognitive radios, and it is the cornerstone of adaptive modulation and demodulation abilities to sense and learn surrounding environments and make corresponding decisions. In this paper, we propose a spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Since the frequency variation over time is the most important distinction between radio signals with various modulation schemes, we plan to expand samples by introducing different intensities of interference to the spectrum of radio signals. The original signal is first transformed into the frequency domain by using short-time Fourier transform, and the interference to the spectrum can be realized by bidirectional noise masks that satisfy the specific distribution. The augmented signals can be reconstructed through inverse Fourier transform based on the interfered spectrum, and then, the original and augmented signals are fed into the network. Finally, data augmentation at both training and testing stages can be used to improve the generalization performance of deep neural network. To the best of our knowledge, this is the first time that radio signals are augmented to help modulation classification by considering the frequency domain information. Moreover, we have proved that data augmentation at the test stage can be interpreted as model ensemble. By comparing with a variety of data augmentation techniques and state-of-the-art modulation classification methods on the public dataset RadioML 2016.10a, experimental results illustrate the effectiveness and advancement of proposed method.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-020-05514-1