Loading…

In-Field Estimation of Orange Number and Size by 3D Laser Scanning

The estimation of fruit load of an orchard prior to harvest is useful for planning harvest logistics and trading decisions. The manual fruit counting and the determination of the harvesting capacity of the field results are expensive and time-consuming. The automatic counting of fruits and their geo...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2019-12, Vol.9 (12), p.885
Main Authors: Méndez, Valeriano, Pérez-Romero, Antonio, Sola-Guirado, Rubén, Miranda-Fuentes, Antonio, Manzano-Agugliaro, Francisco, Zapata-Sierra, Antonio, Rodríguez-Lizana, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The estimation of fruit load of an orchard prior to harvest is useful for planning harvest logistics and trading decisions. The manual fruit counting and the determination of the harvesting capacity of the field results are expensive and time-consuming. The automatic counting of fruits and their geometry characterization with 3D LiDAR models can be an interesting alternative. Field research has been conducted in the province of Cordoba (Southern Spain) on 24 ‘Salustiana’ variety orange trees—Citrus sinensis (L.) Osbeck—(12 were pruned and 12 unpruned). Harvest size and the number of each fruit were registered. Likewise, the unitary weight of the fruits and their diameter were determined (N = 160). The orange trees were also modelled with 3D LiDAR with colour capture for their subsequent segmentation and fruit detection by using a K-means algorithm. In the case of pruned trees, a significant regression was obtained between the real and modelled fruit number (R2 = 0.63, p = 0.01). The opposite case occurred in the unpruned ones (p = 0.18) due to a leaf occlusion problem. The mean diameters proportioned by the algorithm (72.15 ± 22.62 mm) did not present significant differences (p = 0.35) with the ones measured on fruits (72.68 ± 5.728 mm). Even though the use of 3D LiDAR scans is time-consuming, the harvest size estimation obtained in this research is very accurate.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy9120885