Loading…

Physical layer security for NOMA: limitations, issues, and recommendations

More and more attention is being directed towards the Non-Orthogonal Multiple Access (NOMA) technology due to its many advantages such as high data rate, enhanced spectral and energy efficiency, massive connectivity, and low latency. On the other hand, secure data transmission remains a critical cha...

Full description

Saved in:
Bibliographic Details
Published in:Annales des télécommunications 2021-06, Vol.76 (5-6), p.375-397
Main Authors: Melki, Reem, Noura, Hassan N., Chehab, Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:More and more attention is being directed towards the Non-Orthogonal Multiple Access (NOMA) technology due to its many advantages such as high data rate, enhanced spectral and energy efficiency, massive connectivity, and low latency. On the other hand, secure data transmission remains a critical challenge in wireless communication systems since wireless channels are, in general, exposed. To increase the robustness of NOMA systems and overcome the issues related to wireless transmission, several Physical Layer Security (PLS) schemes have been recently presented. Unlike conventional security algorithms, this type of solutions exploits the dynamicity of the physical layer to secure data using a single iteration and minimum operations. In this paper, we survey the various NOMA-based PLS schemes in the literature, which target all kinds of security properties. From this study, we have noticed that the majority of the research work in this area is mainly focused on data confidentiality and privacy and not on other security properties such as device and source authentication, key generation, and message integrity. Therefore, we discuss the PLS data confidentiality schemes for NOMA and their limitations, challenges, and countermeasures, and we propose different methods to address the remaining security properties.
ISSN:0003-4347
1958-9395
DOI:10.1007/s12243-020-00819-7