Loading…
Ultimate precision of direct tomography of wave functions
In contrast to the standard quantum state tomography, the direct tomography seeks a direct access to the complex values of the wave function at particular positions. Originally put forward as a special case of weak measurement, it has been extended to arbitrary measurement setup. We generalize the i...
Saved in:
Published in: | Quantum information processing 2021-07, Vol.20 (7), Article 221 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In contrast to the standard quantum state tomography, the direct tomography seeks a direct access to the complex values of the wave function at particular positions. Originally put forward as a special case of weak measurement, it has been extended to arbitrary measurement setup. We generalize the idea of “quantum metrology,” where a real-valued phase is estimated, to the estimation of complex-valued phase. We show that it enables to identify the optimal measurements and investigate the fundamental precision limit of the direct tomography. We propose a few experimentally feasible examples of direct tomography schemes and, based on the complex phase estimation formalism, demonstrate that direct tomography can reach the Heisenberg limit. |
---|---|
ISSN: | 1570-0755 1573-1332 |
DOI: | 10.1007/s11128-021-03167-0 |