Loading…
Optimization of Reactor Temperature for Continuous Anaerobic Digestion of Cow Manure: Bangladesh Perspective
Converting organic waste into energy through anaerobic digestion is gaining popularity day by day. The reactor temperature is considered as one of the most vital factors for the digestion process. An experiment was conducted in the Biogas Laboratory of Green Energy Knowledge Hub at Bangladesh Agricu...
Saved in:
Published in: | Sustainability 2020-11, Vol.12 (21), p.8772 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Converting organic waste into energy through anaerobic digestion is gaining popularity day by day. The reactor temperature is considered as one of the most vital factors for the digestion process. An experiment was conducted in the Biogas Laboratory of Green Energy Knowledge Hub at Bangladesh Agricultural University (BAU) to examine the influence of temperature on anaerobic digestion of cow-dung. Laboratory-scale continuous stirred tank reactors with a working volume of 15 L were operated for a 30-day retention time. The reactors were set at 20 °C, 25 °C, 30 °C, 35 °C, 40 °C and 45 °C, respectively to determine the effect of temperature on anaerobic digestion performance. Different parameters like total solids, volatile solids, pH, volatile fatty acids, ammonia nitrogen, total nitrogen, biogas production rate and methane concentration were examined. Among all the reactors, the reactor at 40 °C temperature produced maximum biogas (312.43 L/kg VS) and methane yields (209.70 L/kg VS), followed by the reactors at 35 °C and 30 °C, respectively. Statistical analysis of the obtained experimental results using Minitab® showed that the optimum process performance in terms of methane yield and volatile solid degradation is achieved at a reactor temperature of 35.82 °C. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su12218772 |