Loading…
Gain-Scheduled Finite-Time Synchronization for Reaction-Diffusion Memristive Neural Networks Subject to Inconsistent Markov Chains
An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-sched...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2021-07, Vol.32 (7), p.2952-2964 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An innovative class of drive-response systems that are composed of Markovian reaction-diffusion memristive neural networks, where the drive and response systems follow inconsistent Markov chains, is proposed in this article. For this kind of nonlinear parameter-varying systems, a suitable gain-scheduled controller that involves a mode and memristor-dependent item is designed, so that the error system is bounded within a finite-time interval. Moreover, by constructing a novel Lyapunov-Krasovskii functional and employing the canonical Bessel-Legendre inequality and free-weighting matrix method, the conservatism of the finite-time synchronization criterion can be greatly reduced. Finally, two numerical examples are provided to illustrate the feasibility and practicability of the obtained results. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2020.3009081 |