Loading…

Polynomial-Division-Based Algorithms for Computing Linear Recurrence Relations

Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp-Massey algorithm. Likewise, sparse multivariate polynomial interpola...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-07
Main Authors: Berthomieu, Jérémy, Jean-Charles Faugère
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp-Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidimensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence.Several algorithms solve this problem. The so-called Berlekamp-Massey-Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process.We propose a new algorithm for computing the Gr{\"o}bner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp-Massey-Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations.A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with Pad{é} approximants of this mirror polynomial.As an addition from the paper published at the ISSAC conferance, we give an adaptive variant of this algorithm taking into account the shape of the final Gr{\"o}bner basis gradually as it is discovered. The main advantage of this algorithm is that its complexity in terms of operations and sequence queries only depends on the output Gr{\"o}bner basis.All these algorithms have been implemented in Maple and we report on our comparisons.
ISSN:2331-8422