Loading…
Model identification for ARMA time series through convolutional neural networks
We use convolutional neural networks for model identification in ARMA time series models, where our networks are trained on synthetic data with known ground truths. Comparing the performance of these networks with traditional likelihood-based methods, in particular the Akaike and Bayesian Informatio...
Saved in:
Published in: | Decision Support Systems 2021-07, Vol.146, p.113544, Article 113544 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We use convolutional neural networks for model identification in ARMA time series models, where our networks are trained on synthetic data with known ground truths. Comparing the performance of these networks with traditional likelihood-based methods, in particular the Akaike and Bayesian Information Criteria, we are able to show that when it comes to statistical inference on ARMA orders, neural networks can significantly outperform likelihood-based methods in terms of accuracy and, by orders of magnitude, in terms of speed. We also observe improvements in terms of time series forecasting. Our approach shows the feasibility of using artificial neural networks for statistical inference in situations where classical likelihood-based methods are difficult or costly to implement. |
---|---|
ISSN: | 0167-9236 1873-5797 |
DOI: | 10.1016/j.dss.2021.113544 |