Loading…

Solid polymer nanocomposite electrolytes with improved interface properties towards lithium metal battery application at room temperature

Solid polymer electrolytes (SPEs) with good thermal, mechanical and electrochemical cycling stability are required for application in all-solid-state lithium metal batteries (LMBs) using non-intercalating Li metal anodes at room temperature. In this context, the polymer architecture plays a signific...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2021-08, Vol.387, p.138455, Article 138455
Main Authors: Erabhoina, Harimohan, Rosenbach, Dominic, Mohanraj, John, Thelakkat, Mukundan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solid polymer electrolytes (SPEs) with good thermal, mechanical and electrochemical cycling stability are required for application in all-solid-state lithium metal batteries (LMBs) using non-intercalating Li metal anodes at room temperature. In this context, the polymer architecture plays a significant role in influencing the above parameters. Therefore, we studied systematically Poly(MA)m-graft-PEGME2k in comparison to the linear poly(ethylene oxide) (PEO) homopolymer as SPEs in all-solid-state LMBs using LiFePO4 as a cathode. Additionally, nanocomposite electrolytes using bottlebrush (SPNE1) and PEO (SPNE2) with improved mechanical and electrochemical properties were prepared by adding different amounts of TiO2 nanoparticles. Among them, the SPNE1-10 (with 10 wt% TiO2) showed a homogenous distribution of nanoparticles throughout the polymer matrix, exhibited a good ionic conductivity of 3·10–5 at 25 ᴼC and 5.2·10–4 at 70 ᴼC, as well as a high electrochemical stability of up to 5.2 V vs. Li/Li+. Moreover, the symmetric Li/SPNE1-10/Li cells displayed a constant current up to 40 cycles without any fluctuations indicating good interfacial compatibility between the electrode and electrolyte. Furthermore, extended distribution of relaxation times (eDRT) studies provide evidence of a stable solid-electrolyte interface (SEI) layer formation, which is further supported by ex-situ X-ray photoelectron spectroscopy (XPS) analysis of the cycled lithium surface. The LMBs with the SPNE1-10 electrolyte delivered a high discharge capacity of 132 mAh g−1 at 70 ᴼC at a 0.2C. Even, when the current rate was increased to 2C, the cell maintained a good discharge capacity after 400 cycles. The SPNE1-10 nanocomposite based on the bottlebrush polymer outperforms considerably the SPNE2-10 consisting of linear PEO for the whole temperature range from 25 to 80 ᴼC enabling efficient all solid-state LMBs using SPEs below 70 ᴼC.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2021.138455