Loading…
Effects of Machine Learning Approach in Flow-Based Anomaly Detection on Software-Defined Networking
Recent advancements in software-defined networking (SDN) make it possible to overcome the management challenges of traditional networks by logically centralizing the control plane and decoupling it from the forwarding plane. Through a symmetric and centralized controller, SDN can prevent security br...
Saved in:
Published in: | Symmetry (Basel) 2020-01, Vol.12 (1), p.7 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent advancements in software-defined networking (SDN) make it possible to overcome the management challenges of traditional networks by logically centralizing the control plane and decoupling it from the forwarding plane. Through a symmetric and centralized controller, SDN can prevent security breaches, but it can also bring in new threats and vulnerabilities. The central controller can be a single point of failure. Hence, flow-based anomaly detection system in OpenFlow Controller can secure SDN to a great extent. In this research, we investigated two different approaches of flow-based intrusion detection system in OpenFlow Controller. The first of which is based on machine-learning algorithm where NSL-KDD dataset with feature selection ensures the accuracy of 82% with random forest classifier using the gain ratio feature selection evaluator. In the later phase, the second approach is combined with a deep neural network (DNN)-based intrusion detection system based on gated recurrent unit-long short-term memory (GRU-LSTM) where we used a suitable ANOVA F-Test and recursive feature elimination selection method to boost classifier output and achieve an accuracy of 88%. Substantial experiments with comparative analysis clearly show that, deep learning would be a better choice for intrusion detection in OpenFlow Controller. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym12010007 |