Loading…

On the von Neumann algebras associated to Yang–Baxter operators

Bożejko and Speicher associated a finite von Neumann algebra MT to a self-adjoint operator T on a complex Hilbert space of the form $\mathcal {H}\otimes \mathcal {H}$ which satisfies the Yang–Baxter relation and $ \left\| T \right\| < 1$. We show that if dim$(\mathcal {H})$ ⩾ 2, then MT is a fact...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2021-08, Vol.151 (4), p.1331-1354
Main Authors: Bikram, Panchugopal, Kumar, Rahul, Mohanta, Rajeeb, Mukherjee, Kunal, Saha, Diptesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bożejko and Speicher associated a finite von Neumann algebra MT to a self-adjoint operator T on a complex Hilbert space of the form $\mathcal {H}\otimes \mathcal {H}$ which satisfies the Yang–Baxter relation and $ \left\| T \right\| < 1$. We show that if dim$(\mathcal {H})$ ⩾ 2, then MT is a factor when T admits an eigenvector of some special form.
ISSN:0308-2105
1473-7124
DOI:10.1017/prm.2020.62