Loading…

Oxiracetam Mediates Neuroprotection Through the Regulation of Microglia Under Hypoxia-Ischemia Neonatal Brain Injury in Mice

In neonatal hypoxic-ischemic brain damage (HIBD), in addition to damage caused by hypoxia and ischemia, over-activation of inflammation leads to further deterioration of the condition, thus greatly shortening the optimal treatment time window. Ischemic penumbra, the edematous area encompassing the i...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurobiology 2021-08, Vol.58 (8), p.3918-3937
Main Authors: Wang, Dan, Wei, Yanbang, Tian, Jingxia, He, Dong, Zhang, Rui, Ji, Xiaoshuai, Huang, Xiaoming, Sun, Jun, Gao, Jiajia, Wang, Zixiao, Pang, Qi, Liu, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In neonatal hypoxic-ischemic brain damage (HIBD), in addition to damage caused by hypoxia and ischemia, over-activation of inflammation leads to further deterioration of the condition, thus greatly shortening the optimal treatment time window. Ischemic penumbra, the edematous area encompassing the infarct core, is characterized by typical activation of microglia and overt inflammation, and prone to incorporate into the infarct core gradually after ischemia onset. If treated in time, the cells located in the penumbra can survive, thereby impeding the expansion of the infarction. We demonstrated for the first time that in the acute phase of HIBD in neonatal mice, treatment of Oxiracetam (ORC) significantly curtailed the size of ischemic penumbra together with drastic reduction of infarction. By staining various cellular markers, we found that the penumbra was defined and concentrated with activated microglia. We also analyzed transmission electron microscopy and Luminex assay results to elucidate the mechanisms involved. We further confirmed that ORC switched polarization of microglia from the inflammatory towards the alternatively activated phenotype, thus promoting microglia from being neurotoxic into neuroprotective. Meanwhile, ORC decreased proliferation of microglia; however, their functions of phagocytosis and autophagy were otherwise enhanced. Last, we clarified that ORC promoted autophagy through the AMPK/mTOR pathway, which further induced the transition of the inflammatory to the alternatively activated phenotype in microglia. The pro-inflammatory factors secretion was inhibited as well, thereby reducing the progression of the infarction. Taken together, it is concluded that Oxiracetam reduced the expansion of ischemic infarction in part via regulating the interplay between microglia activation and autophagy, which would delay the progression of HIBD and effectively prolong the time window for the clinical treatment of HIBD.
ISSN:0893-7648
1559-1182
DOI:10.1007/s12035-021-02376-z