Loading…
Experimental investigation of effect of printing parameters on impact strength of the bio-inspired 3D printed specimen
Additive Manufacturing (AM) has the ability to fabricate complex structures with bio-mimicry features. Fused Deposition Modeling (FDM), which is AM technique, has the capability of creating complex geometry parts in a short time. The mechanical properties of FDM build parts can be improved by select...
Saved in:
Published in: | Sadhana (Bangalore) 2021-09, Vol.46 (3), Article 151 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Additive Manufacturing (AM) has the ability to fabricate complex structures with bio-mimicry features. Fused Deposition Modeling (FDM), which is AM technique, has the capability of creating complex geometry parts in a short time. The mechanical properties of FDM build parts can be improved by selecting the proper printing parameters. In the present study, the effect of printing parameters viz. printing orientation (flat and on-edge) and infill density (20%, 35%, 50%, 65%, 80% and 100%) on the impact strength of bio-inspired 3D printed specimen has been studied. The specimens with multi-infill pattern were inspired by bio-inspired structure like a turtle shell. The multi-infill pattern specimen includes triangular, honeycomb and grid infill patterns. Based on this multi-infill pattern, impact specimens were fabricated and tested. Impact strength and impact strength/weight ratio of specimens in flat and on-edge orientation are measured and evaluated. The result shows that the impact strength and impact strength/weight ratio of multi-infill pattern specimens printed in flat orientation is less compared to specimens printed in on-edge orientation. The multi-infill pattern specimen with 20% infill density printed in on-edge orientation has the highest impact strength and impact strength/weight ratio as compared to other specimens. Further, high magnification fracture surface analysis is performed to aid in the characterisation of specimen failures. |
---|---|
ISSN: | 0256-2499 0973-7677 |
DOI: | 10.1007/s12046-021-01671-8 |