Loading…
Statistical analysis of non-Maxwellian electron distribution functions measured with angularly resolved Thomson scattering
Angularly resolved Thomson scattering is a novel extension of Thomson scattering, enabling the measurement of the electron velocity distribution function over many orders of magnitude. Here, details of the theoretical basis of the technique and the instrument designed for this measurement are descri...
Saved in:
Published in: | Physics of plasmas 2021-08, Vol.28 (8) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Angularly resolved Thomson scattering is a novel extension of Thomson scattering, enabling the measurement of the electron velocity distribution function over many orders of magnitude. Here, details of the theoretical basis of the technique and the instrument designed for this measurement are described. Angularly resolved Thomson-scattering data from several experiments are shown with descriptions of the corresponding distribution functions. A reduced model describing the distribution function is given and used to perform a Monte Carlo analysis of the uncertainty in the measurements. The electron density and temperature were determined to a precision of 12% and 21%, respectively, on average, while all other parameters defining the distribution function were generally determined to better than 20%. It was found that these uncertainties were primarily due to limited signal to noise and instrumental effects. Measurements with this level of precision were sufficient to distinguish between Maxwellian and non-Maxwellian distribution functions. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/5.0041504 |