Loading…
A Fast Multiscale Clustering Approach Based on DBSCAN
Multiscale brings great benefits for people to observe objects or problems from different perspectives. It has practical significance for clustering on multiscale data. At present, there is a lack of research on the clustering of large-scale data under the premise that clustering results of small-sc...
Saved in:
Published in: | Wireless communications and mobile computing 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multiscale brings great benefits for people to observe objects or problems from different perspectives. It has practical significance for clustering on multiscale data. At present, there is a lack of research on the clustering of large-scale data under the premise that clustering results of small-scale datasets have been obtained. If one does cluster on large-scale datasets by using traditional methods, two disadvantages are as follows: (1) Clustering results of small-scale datasets are not utilized. (2) Traditional method will cause more running overhead. Aims at these shortcomings, this paper proposes a multiscale clustering framework based on DBSCAN. This framework uses DBSCAN for clustering small-scale datasets, then introduces algorithm Scaling-Up Cluster Centers (SUCC) generating cluster centers of large-scale datasets by merging clustering results of small-scale datasets, not mining raw large-scale datasets. We show experimentally that, compared to traditional algorithm DBACAN and leading algorithms DBSCAN++ and HDBSCAN, SUCC can provide not only competitive performance but reduce computational cost. In addition, under the guidance of experts, the performance of SUCC is more competitive in accuracy. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2021/4071177 |